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Abstract

In many real tasks, it is generally desired to study the causal effect on a specific
target (response variable) only, with no need to identify the thorough causal effects
involving all variables. In this paper, we attempt to identify such effects by a
few active interventions where only the response variable is observable. This task
is challenging because the causal graph is unknown and even there may exist
latent confounders. To learn the necessary structure for identifying the effects,
we provide the graphical characterization that allows us to efficiently estimate all
possible causal effects in a partially mixed ancestral graph (PMAG) by generalized
back-door criterion. The characterization guides learning a local structure with
the interventional data. Theoretical analysis and empirical studies validate the
effectiveness and efficiency of our proposed approach.

1 Introduction

Identifying causal effects is one prominent task throughout empirical sciences. In many real problems,
we are generally desired to study the causal effect on a specific target only, i.e. response variable,
with no need to identify the thorough causal effects involving all variables. For example, a business
person wants to maximize profit. The person has many intervention methods such as lowering price,
increasing advertisement investment, improving quality, and so on. A valid approach to guide the
decisions is to estimate the causal effect of each variable on the response variable. We call it target
effect identification in this paper. After identifying all of these causal effects, the person could see
which intervention could lead to the most desired response (profit).

To achieve target effect identification, an ideal method is to intervene on each decision variable with
different attainable values and collect the interventional data of the response variable. However, when
there are many decision variables and many attainable values for each variable, it will take enormous
number of interventions, which is economically unfeasible. Considering that there is usually a large
amount of observational data in reality, we hope to exploit mainly the observational data to achieve it.

The main obstacle here is that the causal graph of all involved variables is not available, which makes
causal effect identification intractable. Hence, we learn the structure at first. As shown by Verma and
Pearl [1], only a Markov equivalence class could be learned with observational data without further
assumptions, where there are possibly unidentified causal relations resulting in unidentified causal
effects. To reveal these effects, we further learn the causal relations in the Markov equivalence class
by introducing a small amount of active hard interventions, i.e., we force some variable to a known
value [2, 3, 4]. In practice, generally one can only observe part of variables under interventions rather
than all of those, e.g., a business person can observe his profit, but does not know other companies’
profit. To make the method applicable in a broader scenario, we consider an extreme situation that
only the response variable is observable, which could be trivially extended to any settings with
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part of variables observed. In addition, there are usually latent confounders in practical problems.
For instance, economic level influences both price and advertising cost, but it is hard to evaluate
accurately and thus a latent confounder. In summary, in this paper we learn the causal knowledge
where there are latent confounders and only the response variable is observable under interventions.

This problem is very challenging, because the fact that only the response variable is observable
disables the approaches designed for situations where all variables are observable [2, 5, 6], while the
existence of latent confounders disables the typical solutions [7]. To get a brief understanding of the
challenges taken by latent confounders in techniques, consider a graph learned with observational
data by traditional causal discovery methods [8]: If there is no latent confounder, the definite adjacent
edges of intervened variable X lead to a definite interventional distribution of the response variable
Y by back-door criterion [9], which makes it possible to learn the edges of X by the interventional
data of Y ; when latent confounders exist, however, the mapping no longer holds. Besides, a partial
mixed ancestral graph (PMAG) is commonly used to describe the relation between variables in this
condition. The back-door criterion may fail in this case since there possibly exist latent confounders
influencing the two variables of some directed edges. Hence, we also need to identify whether such
latent confounders exist behind the directed edges, in addition to just learning the causal edges.

To overcome the difficulties above, we provide a graphical characterization that allows us to efficiently
find all possible causal effects of the intervened variable on the response variable in a partial mixed
ancestral graph. Guided by the characterization, we learn a local structure and identify the presence of
latent confounders behind some directed edges by each intervention, which leads to identifying some
causal effects on the response variable. After a few active interventions on different variables, our
method ACIC, short for ACtive target effect Identification with latent Confounding, could achieve
target effect identification. Due to space limit, we present related work and all the proofs in Appendix.

2 Preliminary

We guide readers to Appendix A.1 for the notions including causal graph (G = (V,E)), mixed
graph, mark, arrowhead, tail, circle(◦), partial mixed graph, parent, child, spouse, possible di-
rected path, (possible) ancestor, PossAn(X,G), An(X,G), (possible) descendant, PossDe(X,G),
De(X,G), adjacent, Adj(X,G), almost directed cycle, collider path, minimal path, ancestral graph,
m-separation (m-connecting or active), maximum ancestral graph (MAG,M), discriminating path,
Markov equivalent, Markov equivalence class (MEC), partial ancestral graph (PAG), visible,MX ,
PX , causal effect (P (Y |do(X))), and the common assumptions including positivity and no selection
bias. ∗ is a wildcard that denotes any of the marks. For a partial mixed graph, we say it is a partial
mixed ancestral graph (PMAG) if there is no directed or almost directed cycle, and denote it by P .
Note both MAG and PAG are special cases of PMAG, thus P could also denote PAG. The relation
between PMAG and PAG is similar to that between partial directed acyclic graph (PDAG) and
completed partial directed acyclic graph (CPDAG) when there is no latent confounder [10]. MAG
M is consistent to PMAG P if it belongs to the MEC represented by P (detailed in Appendix A.1).

For a directed edge Vi → Vj in a graph, we say the edge is pure if the two variables are not influenced
by common latent confounders, denoted by Vi

p−→ Vj . We use a purity matrix to characterize the
purity of each edge in a PMAG G, in which 1 is in (i, j) entry only if the directed edge Vi → Vj in
G is pure, and 0 otherwise. Note that 0 does not imply that the edge is impure. It is also possible
that we are unaware of whether it is pure or the edge is not directed. In the literature, a graphical
characterization to imply that there are no latent confounders behind a directed edge in an MAG
or PAG is proposed by Zhang [11], where they call it by visibility. Visibility is sufficient but not
necessary for purity, which is detailed in Appendix A.2. Thus, given a PMAG, we initialize the
purity matrix by setting (i, j) entry to 1 if Vi → Vj is visible and 0 otherwise. For an MAGM,MX˜denotes the graph by removing the directed edges out of X inM that are labeled to be pure in purity
matrix. For a PMAG P , see Appendix A.4 for the definition of PX˜ .

Since the graph is continuously learned by interventions in this paper, the graph in the process
is a PMAG. Hence we present Prop. 1 to guide causal effect identification in a PMAG with the
consideration of purity matrix rather than only in a PAG or MAG. It is based on the generalized
back-door criterion (GBC) and the graphical condition for the causal effect identifiability by GBC in
MAG or PAG proposed by Maathuis et al. [12]. Before that, we introduce D-SEP(X,Y,G) in Def. 1.
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Definition 1 (D-SEP(X,Y,G) [12]). Let X and Y be two distinct vertices in a mixed graph G. We
say that V ∈ D-SEP(X,Y,G) if V 6= X , and there is a collider path between X and V in G, such
that every vertex on this path (including V ) is an ancestor of X or Y in G.

Proposition 1. Let G be a PMAG and W be a purity matrix of G. Suppose X ∈ An(Y,G) and Y
are two distinct vertices in G. There exists a generalized back-door set relative to (X,Y ) and (G,W )
if and only if D-SEP(X,Y,GX˜ )∩ PossDe(X,G) = ∅. Moreover, if the set exists, D-SEP(X,Y,GX˜ )is such a set. Denote D-SEP(X,Y,GX˜ ) by D, the causal effect is

P (Y |do(X = x)) =

∫
D

P (D)P (Y |D, X = x) dD. (1)

There are two possible unidentifiable cases for P (Y |do(X)) by GBC in Prop. 1. One is that there are
many possible causal effects due to the missing of exact structure information, but we do not know
which is correct. In this case, we could address it by learning the structure with interventional data.
The other unidentifiable case is that the causal effect is unidentifiable by GBC even if we know the
MAG and the purity of each edge. We return “Fail” for such X because GBC is not sufficient for
identifying the causal effect in this case, and we say GBC fails ( to identify P (Y |do(X))).

3 The Proposed Approach

In this paper, we assume faithfulness, positivity, and no selection bias. Denote the decision variables
by X1, · · · , Xp and the response variable by Y . Given the observational data of these variables,
our goal is to achieve target effect identification by generalized back-door criterion, i.e., we aim to
identify P (Y |do(Xi)) by GBC for each variable Xi, i = 1, 2, · · · , p if GBC does not fail. With the
observational data, we can learn a PAG P that the true MAG is consistent to by FCI algorithm [8].
And we initialize a purity matrix by setting (i, j) entry to 1 if the directed edge between the two
variables is visible in P and 0 otherwise. The causal effects of some variables on Y are possibly
unidentifiable in P by Prop. 1. To identify these effects, we further introduce active interventions
and observe Y under those. Beginning from P , in each round our method selects one variable X
from Xi, i = 1, · · · , p to intervene and exploits the interventional data of Y to learn the structure,
including learning an updated PMAG by revealing circles and updating the purity matrix. The process
repeats until identifying all effects P (Y |do(Xi)), i = 1, 2, · · · , p (identifying failing of GBC is also
included). Since it is recursive, we just present the method to learn the structure by interventional
data in one round. The criterion to select the intervention variable in each round is given at the end.

3.1 Two direct methods

A naive method to learn the structure by interventional data is enumerating each MAGM consistent
to the PMAG P . For eachM, P (Y |do(X)) can be estimated with observational data by (1) and
we judge whether the estimated causal effect is consistent with the interventional data. By such
judgment, we could rule out the MAGs with inconsistent causal effects. Yet, this method is usually
impractical since it takes a huge computation complexity mainly from two parts. One part is the
exhaustive search in the space of MAGs. As is known to all, the space of MAGs is extremely large.
For each searched MAG, we also need to judge whether it is consistent to P1. The other costly part is
looking for D-SEP(X,Y,MX˜ ) according to Def. 1 to estimate causal effects by (1) for each MAG.

A cleverer approach instead of enumerating is to directly learn a local structure by interventional
data, inspired by ACI proposed by Wang et al. [7]. ACI tackles a similar task but assumes no latent
confounders. The core of this approach is to find an equivalent condition that could be obtained
based on a local structure for causal effect. In this way, there is a bijection between the condition and
P (Y |do(X)), by which we could learn a local structure with the interventional data of Y . Specifically,
ACI is comprised of three steps: (a) propose Minimal Parental back-door admissible Set (MPS), a
variable set that could be obtained by only the orientation of adjacent edges of X , as the equivalent
condition for P (Y |do(X)); (b) find all possible MPSs in the partial graph to be learned; (c) identify
which MPS is correct by interventional data and learn the adjacent edges of X implied by the MPS.

1For such judgment, we could first obtain an MAG based on P by the procedure of Theorem 2 by Zhang
[13], as a representative of P . Then we judge whether the searched MAG is Markov equivalent to this MAG by
the necessary and sufficient condition for Markov equivalence by Ali et al. [14], Hu and Evans [15].
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Figure 1: Suppose X → Y is pure. The adjacent edges of X are the same in (a) and (b), but the
causal effects are different due to the different marks at C. In addition, although D-SEP(X,Y,MX

∼
)

are different in (a) and (c), the causal effects of X on Y are the same by (1), since A ⊥ Y | X,B.

However, ACI fails if there are latent confounders. In this situation the adjacent edges of X is not
sufficient for identifying causal effects. According to Prop. 1, even though there are the same adjacent
edges of X in two MAGs, the causal effects of X on Y are possibly different if they have different
D-SEP(X,Y,MX˜ ). See Fig. 1(a) and Fig. 1(b) for example. The method of Malinsky and Spirtes
[16] is possibly useful here, which estimates all possible causal effects in P by enumerating the
structures in a relatively local region, but the two parts of computational costs above are still large.

Referring to the framework of ACI, we propose the three steps for our setting in the next three
sections. Firstly, we propose MCS, as an equivalent condition for P (Y |do(X)) in MAG by GBC in
Sec. 3.2. Secondly, we present how to find all MCSs in P by graphical characterization in Sec. 3.3. It
is the main challenge here in contrast to ACI. ACI achieves it by considering all possible orientations
of adjacent edges of X due to the fact that their proposed MPS merely depends on these edges. In our
setting, however, it is unclear which edges MCS depends on. And obviously, enumerating all edges is
not efficient. Hence we propose a graphical characterization to guide it. Lastly, we give the method
to learn marks and purity matrix by interventional data in Sec. 3.4 with all MCSs found before.

3.2 The equivalent condition for causal effects

By Prop. 1, D-SEP(X,Y,MX˜ ) can be as the adjustment set to identify P (Y |do(X)) when GBC does
not fail. Thus, we construct the equivalent condition for P (Y |do(X)) based on D-SEP(X,Y,MX˜ ).Note that D-SEP(X,Y,MX˜ ) cannot be used directly since the causal effects are possibly equal in
the MAGs with different D-SEP(X,Y,MX˜ ). See Fig. 1 for an example. The D-SEP(X,Y,MX˜ ) in
(a) and (c) are {A,B} and {B}, respectively, but P (Y |do(X)) are equal. The reason is A ⊥ Y |X,B
in the two MAGs. When calculating (1), the results are equal after integration on the generalized
back-door set. To formalize this situation, we introduce Minimal Conditional Set (MCS) regarding
D-SEP(X,Y,MX˜ ) inM. The algorithm to find MCS and the related properties are in Appendix B.

Definition 2 (Minimal conditional set regarding D-SEP(X,Y,MX˜ ) (MCS)). LetM be an MAG.
X , Y , and D denote the intervened variable, response variable, and the set D-SEP(X,Y,MX˜ ) in

M, respectively. D is a subset of D. D is a minimal conditional set regarding D inM if

(1) (Y ⊥ D\D |D ∪ {X})M,

(2) (Y 6⊥ D\D′|D′ ∪ {X})M, for any D
′ ⊂ D.

We call it MCS regarding D-SEP(X,Y,MX˜ ) or MCS for short. Note that MCS is essentially a set of

variables. For all MAGsM satisfying the conditions of Prop. 1 with the same D, where D denotes
the MCS regarding D-SEP(X,Y,MX˜ ) in respectiveM, they have the same causal effect as

P (Y |do(X = x)) =

∫
D

P (D)P (Y |D, X = x) dD. (2)

Since structure inference with interventional data is involved, we make an additional assumption as
Assumption 1 to match interventional data to causal graph, playing as the role of faithfulness given
only observational data or some intervention-related assumptions[17, 7, 6, 18]. The purpose is to
avoid that different causal effects in general (e.g. the causal effects P (Y |do(X)) in Fig. 1(a) and
Fig. 1(b) ) happen to be equal given some specific observational distributions. Under the assumption,
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there is a bijection between MCS and P (Y |do(X)) through (2). Finding all possible causal effects
could be converted to finding all possible MCSs. In the next section, we present how to find all
possible MCSs in a PMAG by our proposed graphical characterization.

Assumption 1. For two Markov equivalent MAGs M1 and M2 with the same observational
distribution, if there are different minimal conditional sets regarding D-SEP(X,Y,M1

X˜ ) and

D-SEP(X,Y,M2
X˜ ) in the respective graphs, then P

(
Y |do(X = x)

)
are different in the two MAGs.

3.3 Finding all MCSs in P by graphical characterization

At the beginning, we provide an outline of finding possible MCSs regarding D-SEP(X,Y,MX˜ ) in
allM consistent to P if GBC does not fail to identify P (Y |do(X)) inM. The justification for the
restriction onM is that ifM is the true MAG and GBC fails to identify P (Y |do(X)) inM, there is
no MCS matched to the interventional data. We thus cannot identify an MCS by the intervention. In
this case it is unnecessary to find MCS in suchM. Hence, we consider the MAGM that satisfies
D-SEP(X,Y,MX˜ ) ∩ De(X,M) = ∅, according to Prop. 1. There are three main parts to achieve
it. The first part is to enumerate all mark combinations of X . The true MAG is with one mark
combination among them. As mentioned earlier, the marks of X are not sufficient for identifying
P (Y |do(X)). In another word, MCSs could be different in the MAGs with the same marks at X .
Hence, in the second part we propose the graphical condition to indicate when there are different
MCSs in the MAGs with the same marks at X . And this graphical condition can be obtained in a
partial graph. Based on that, we present the algorithm to find all possible MCSs in P in the third part.

We first enumerate all possible mark combinations of X . To denote the PMAGs with deterministic
marks atX , we introduce local MAG ofX based onP in Def. 3. For a local MAGM and an MAGM
consistent to M , we then present a sufficient and necessary condition for V ∈ D-SEP(X,Y,MX˜ ) in
Thm. 2, which plays a vital role for the following result involving MCS regarding D-SEP(X,Y,MX˜ ).
Definition 3 (Local MAG of X based on P). Given a PMAG P and a variable X , a PMAG M is
a local MAG of X based on P if (1)M is with definite marks (arrowheads or tails) at X; (2)M is
obtained from P by marking some circles without generating new unshielded colliders or directed or
almost directed cycles. We call it local MAG for short if there is no ambiguity and denote it by M ,
which is different from calligraphicM that denotes MAG.

Theorem 2. Let M be a local MAG of X andM be an MAG consistent to M . Suppose V (V 6=
X,Y ) is a variable inM. If D-SEP(X,Y,MX˜ ) ∩ De(X,M) = ∅, then V ∈ D-SEP(X,Y,MX˜ )holds if and only if there is at least one collider path from X to V starting by an arrowhead at X in
M such that each variable except for X on the path is an ancestor of X or Y inM.

The advantage of considering local MAG of X rather than P with circles at X is that based on local
MAG we could obtain a set of variables, PD-SEP(X,Y,M), as Def. 4. This set implies some variables
in D-SEP(X,Y,MX˜ ) and has a good property that if PD-SEP(X,Y,M)\D-SEP(X,Y,MX˜ ) 6= ∅,there must be at least one variable V ∈ PD-SEP(X,Y,M) which is not an ancestor of X or Y inM,
as shown by the combination of Thm. 2 and Def. 4. This property is utilized to prove the main result.

Definition 4 (PD-SEP(X,Y,M)). Let M be a local MAG of X andM be an MAG consistent to M .
Variable V ∈ PD-SEP(X,Y,M) if and only if V ∈ PossAn(Y,M)\De(X,M)2 and there exists a
collider path between X and V in M , where each non-endpoint variable is an ancestor of X or Y in
M but not a descendant of X inM.

Remark. In the literature, there is a well-defined notion Possible-D-SEP(X,Y ) [8, 19], which is intro-
duced with the similar intention that indicates some variables possibly belonging to D-SEP(X,Y,M).
Since ours is pretty different in both required conditions and the restriction on ancestral relations, we
use a new name PD-SEP(X,Y,M) to distinguish them.

With the knowledge above, we present our main result in Thm. 3. Perhaps surprisingly, it implies that
given a local MAG M , although there are possibly different D-SEP(X,Y,MX˜ ) in distinct MAGM

2Note all the descendants of X inM consistent to M are knowable in M , which is detailed by Lemma 19 in
Appendix C.1. Hence PD-SEP(X,Y,M) can be obtained based on M without the further knowledge aboutM.
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Algorithm 1 Find all possible MCSs in P
input: Intervention variable X , PAG P

1: L← ∅ // It is to record each local MAG M j and corresponding MCSj

2: for each local MAG M j of X based on P by merely marking the marks at X do
3: if there is critical variable set Cj for (X,Y ) in M j then
4: CRITICAL(M j ,Cj ,Sj) // Sj (Sjk below) is the set S defined in Def. 5 in M j (M jk)
5: else
6: L = L ∪ (M j ,MCSj)
7: end if
8: end for
9: function CRITICAL(M j ,Cj ,Sj)

10: for each element Cjk in the power set of Cj do
11: Obtain a new local MAG M jk by orienting F → S for ∀F ∈ Cjk ,∀S ∈ Sj and marking

the critical marks of F ∈ Cj\Cjk as arrowheads
12: if there is critical variable set Cj for (X,Y ) in M jk then
13: CRITICAL(M jk ,Cjk ,Sjk )
14: else
15: L = L ∪ (M jk ,MCSjk)
16: end if
17: end for
18: end function
output: L

consistent to M , the MCSs regarding them are the same if there are no critical variables for (X,Y )
in M . We define critical variables for (X,Y ) in Def. 5, and show an example in Fig. 2, where Ft is a
critical variable and the circles colored by red are critical marks.

Definition 5 (Critical variable for (X,Y )). In a local MAG M , Ft ∈ PD-SEP(X,Y,M) is called a
critical variable for (X,Y ) if there is a path X ↔ F1 ↔ · · · ↔ Ft−1 ↔ Ft or X ↔ F1 ↔ · · · ↔
Ft−1 ←◦Ft, t ≥ 1, where each non-endpoint variable is an ancestor of X or Y in M , and there is a
non-empty variable set S relative to Ft defined as follows: S ∈ S if and only if in M (1) S is a child
of X,F1, · · · , Ft−1, (2) there is Ft ◦−∗ S, (3) S is at one minimal possible directed path from Ft to
Y . Each circle at Ft on the edge with Ft−1 or S ∈ S is called a critical mark of Ft.

Theorem 3. Let M be a local MAG of X based on a PMAG P . Then condition (1) below is
sufficient for condition (2):

(1) there is no critical variable for (X,Y ) in M .

(2) for any an MAGM consistent to M such that (a) D-SEP(X,Y,MX˜ ) ∩ De(X,M) = ∅,
(b) X ∈ An(Y,M), it holds that AM = A′M, where AM denotes the MCS regarding
D-SEP(X,Y,MX˜ ) inM and A′M denotes the MCS regarding PD-SEP(X,Y,M) inM;

Remark. It is noteworthy that all the MAGs consistent to M are Markov equivalent. Hence the MCSs
regarding PD-SEP(X,Y,M) in these MAGs are the same, namely, A′M is invariant for differentM.
If there is no critical variable as condition (1), then for any MAGM consistent to M , AM = A′M
holds according to Thm. 3. We thus conclude AM is invariant for differentM consistent to M , i.e.,
different D-SEP(X,Y,MX˜ ) in distinctM consistent to M share the same MCS regarding them.

X

Y S

F1 Ft
…Ft-1

Figure 2: An illustration for critical
variable Ft and critical marks (red).

Def. 5 and Thm. 3 form a graphical characterization that allows
us to obtain all possible MCSs in all MAGs consistent to a local
MAG M . We propose Alg. 1 to find all MCSs in P based on it.
Given a PMAG P , it is easy to find local MAGs M based on
P by differently marking the circles at X without generating
new unshielded colliders and directed or almost directed cycles
(Line 2). For each M , if there is no critical variable in M , the
MCS regarding D-SEP(X,Y,MX˜ ) is unique, and it equals to
the MCS regarding PD-SEP(X,Y,M) (Line 6). When there is a non-empty critical variable set C,
the MCSs in the MAGs consistent to M could be different. The reason is that the variable in C could
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be the ancestor of X or Y in some MAGs but the non-ancestor in other MAGs, due to the unidentified
critical marks. Conditioning on the non-ancestor variables above makes some generalized back-door
paths from X to Y active, thus these variables cannot appear in MCS. Hence, we further discuss the
critical marks. For any subset Ck of the critical variable set C, there could possibly be some MAG
M consistent to M where Ck ⊆ D-SEP(X,Y,MX˜ ) and (C\Ck) ∩ D-SEP(X,Y,MX˜ ) = ∅. We
use a new local MAG to represent the common parts of these MAGs (Line 10,11). And in the new
one, we further consider whether critical variable exists (Line 12). The soundness of Alg. 1 is shown
in Lemma 4, i.e. no matter what the true MAGM is, the MCS regarding D-SEP(X,Y,MX˜ ) inM
could be returned as long as D-SEP(X,Y,MX˜ ) ∩ De(X,M) = ∅.

Lemma 4. Let P be a PMAG of MAG M. If X ∈ An(Y,M) and D-SEP(X,Y,MX˜ ) ∩De(X,M) = ∅, then the MCS regarding D-SEP(X,Y,MX˜ ) inM and the corresponding local
MAG are contained in the output of Algorithm 1.

3.4 Learning marks and purity matrix by interventional data

In this section we propose how to learn marks and purity matrix by the interventional data of Y . After
intervening on X , there are three possible situations implied by the interventional data of Y .

(1) X has no causal effect on Y , i.e., P (Y |do(X)) = P (Y ),
(2) X has causal effect on Y and it can be identified by GBC, i.e., there exists a generalized

back-door set D such that P (Y |do(X)) =
∫
P (D)P (Y |X,D) dD,

(3) X has causal effect on Y but GBC fails to identify it.

For situation (1), it is trivial to learn the marks by the interventional data according to Prop. 5.
Proposition 5. If P (Y |do(X)) = P (Y ), the marks at X are arrowheads in all the minimal possible
directed paths from X to Y in a partially mixed ancestral graph.

If P (Y |do(X)) is not equal to P (Y ), it implies that the interventional data accords with situation (2)
or situation (3) but is uncertain to us. Hence, we need to find all possible MCSs based on P , then
judge whether one of the estimated causal effects with the observational data by (2) is consistent to
the interventional data. If so, we can see that the causal effect of X on Y can be identified by GBC in
the true MAG. Specifically, we first obtain a group of pairs (M j ,MCSj) by Alg. 1, where M j is a
local MAG and MCSj is the corresponding MCS. Let P̂Mj

(
Y |do(X = x)

)
and P̂

(
Y |do(X = x)

)
denote the estimated causal effect in each M j by MCSj and that under real intervention respectively.
Disc(P,Q) is the distribution discrepancy between P and Q. If there are m intervention samples(
(do(X = x1), Y1

)
, · · · ,

(
do(X = xs), Ys

)
, · · · ,

(
do(X = xm), Ym)

)
, we take MCS? by

MCS? = argmin
MCSj

m∑
s=1

Disc
(
P̂MCSj

(
Y |do(X = xs)

)
, P̂
(
Y |do(X = xs)

))
. (3)

Any distance metric can be used here. Since the attention is not on calculation, we take the expectation
difference as the metric for convenience, i.e., MCS? = argminMCSj

∑m
s=1|ÊMCSj

(
Y |do(X =

xs)
)
− Ys|. If the distance between the estimated causal effect by MCS? and interventional data is

larger than a given threshold, we think that GBC fails to identify such causal effect. We thus mark
such X as “FAIL” and orient some edges by Prop. 6. Otherwise, if there is only one local MAG M∗

corresponding to MCS?, we orient P by M∗. If there are more than one local MAG corresponding to
MCS?, we orient P by the common marks of the local MAGs with MCS?. Besides, when GBC does
not fail to identify the causal effect, all the edges out of X in the minimal directed paths from X to Y
in the PMAG are learned to be pure. Thus we could update the purity matrix accordingly.
Proposition 6. In situation (3), let T denote all variables adjacent to X in the minimal possible
directed paths from X to Y . For T ∈ T, if for ∀V ∈ T\T , it holds either T 6∈ Adj(V,P) or there is
a variable S 6∈ Adj(V,P) such that there is a collider path X◦→ T ↔ · · · ←∗S and every vertex
except S on the path is a parent of V , then X → T .

After the learning process above, we can further update the PMAG according to the property of MAG.
Zhang [13] proposed ten complete rules with only observational data. However, how to orient PMAG
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Algorithm 2 ACIC (ACtive target effect Identification with latent Confounding)

input: PAG P by FCI algorithm;
1: Initialize I1 = {V |V ∈ V(P), V ∈ PossAn(Y,P) and P (Y |do(V )) is unidentifiable by Prop. 1

in P} // Record the variables whose causal effects on Y are unidentifiable by Prop. 1
2: Initialize I2 = ∅ // Record the variables whose causal effects are failed to be identified by GBC
3: while I1\I2 6= ∅ do
4: Select a variable X with the maximum number of circles from I1\I2 to intervene
5: if P (Y |do(X)) equals to P (Y ) then
6: Update P by Prop. 5
7: else
8: Find all possible MCSs in P by Alg. 1 and select MCS∗ by Eq. 3
9: if 1

m

∑m
s=1|ÊMCS∗

(
Y |do(X = xs)

)
− Ys| ≤ τ then // τ is a pre-set threshold

10: if there is only local MAG M∗ with MCS∗ then
11: Update P to M∗, and label all the edges out of X in the minimal directed paths

from X to Y pure
12: else there is more than one local MAG M∗1 ,M

∗
2 , · · · ,M∗k

13: Update P with the common marks in M∗1 ,M
∗
2 , · · · ,M∗k , and label all the edges

out of X in the minimal directed paths from X to Y pure
14: end if
15: Update P further based on the 11 rules for orienting PAGs with background knowl-

edge, and update the purity matrix if some directed edges are newly identified to be visible
16: else // In this case GBC fails to identify P (Y |do(X))
17: Update P by Prop. 6
18: I2 = I2 ∪ {X}
19: end if
20: end if
21: Update I1 by Prop. 1 with the updated PMAG P and the updated purity matrix
22: end while
output: The estimated causal effect of each variable on Y .

completely with the learned knowledge by interventional data is still an open problem. We add an
additional rule referring to the known results for CPDAG [20]. But regretfully, whether the eleven
rules are complete is unknown. In the updated graph, some directed edges are newly identified to be
visible, thus they are identified to be pure. Hence we could also update the purity matrix accordingly.

Rule 11: If a◦→ b→ c, a, b, c ∈ Adj(d), a 6∈ Adj(c), and a, d, c do not form an unshielded
collider, then d→ c.

Proposition 7. Rule 11 is sound.

Combining all the parts above, we present the whole process in Alg. 2. In a PMAG obtained by FCI
or learned after interventions, we judge which variables are possible ancestors of Y by Prop 8. If
there are variables with unidentified causal effects on Y (Line 1) among them and we are not sure
whether GBC fails to identify the effects (Line 3), we select one variable from them to intervene (Line
4) and learn structure by the interventional data (Line 5 - Line 20). Since intervention is expensive in
reality, we hope achieving target effect identification with fewer intervention times. Hence, among the
variables mentioned above, we greedily intervene on the one with the maximum number of circles. A
running example is given in Appendix F to illustrate the detailed procedure of the proposed method.
Proposition 8. In a PMAG P , if there is no minimal possible directed path from X to Y , then X
cannot be ancestor of Y in any MAG consistent to P . And it holds that X 6∈ PossAn(Y,P).

4 Theoretical Results

In this section, we first prove the identifiability of causal effects3. Then we provide an analysis about
the computation complexity of estimating all possible causal effects of each variable X on Y .

3Note when we intervene, we have the information of P (Y |do(X = x). However, we aim to identify
P (Y |do(X)) when we say causal effect identification.
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Theorem 9. Given the observational distribution of the observed variables, if there exists a valid
generalized back-door set for (X,Y ) in the true MAG with the knowledge of the purity of each
directed edge, then we can identify this set by only additional data of Y under intervention on X .

Thm. 9 implies causal effect identifiability of each X on Y by interventions. In practice, when we
intervene on X , in addition to identifying P (Y |do(X)), our method could learn some marks and the
purity of some edges, which lead to the causal effect identification of other variables on Y . Hence
we usually make target effect identification by far fewer intervention times than the variable number.

Estimating all possible causal effects takes the main computational cost. The process of estimating
possible effects in a PMAG comprises finding all MCSs in Sec. 3.3 and using (2). We analyze the
complexity of Sec. 3.3. Since the complexity is strongly related to the graph, it is hard to analyze for a
general graph due to the randomness of the skeleton. We consider a special case - the complete graph,
which is often considered as the most difficult graph to learn, because it has the most edges and we
can learn no marks by only observational data as a result of no conditional independent relationship
between the variables. To ensure that the interventional data accords with situation (2) or (3) when
finding all MCSs in the PMAG is necessary, we set Y as the descendant of all of X1, · · · , Xp. Due
to space limit, we present a brief analysis here, while a detailed version is provided in Appendix E.2.

Proposition 10. LetM be a complete MAG with p+ 1 variables X1, · · · , Xp, Y , where the causal
order of the variables except Y is completely random and Y is at the last. Denote the graph obtained
by FCI with observational data by P and intervention variable by Xi. And let M be a local MAG of
Xi with p− 1− k tails and k arrowheads at Xi. The computational complexity of finding all possible
causal effects P (Y |do(Xi)) in all the MAGs consistent to M is O(2k). Further, the computational
complexity of finding all causal effects P (Y |do(Xi)) in all the MAGs consistent to P is O(3p).

Let S denote the set of variable that has an edge with an arrowhead atXi. Since the graph is complete,
for any subset S1 of S, we could construct an MAGM based onM such that MCS inM is S1, which
is detailed in Appendix E.2. Hence there are 2k causal effects of Xi on Y in the MAGs consistent to
M . Our method thus achieves the minimum complexity in finding possible causal effects in M .

local MAG M PAG P
# Possible causal effects 2k 2p−1

Ours O(2k) O(3p)

Malinsky and Spirtes (2016) None O(3p
2

)

Table 1: Complexity of estimating all effects.

However, when estimating causal effects of Xi

on Y in P , the complexity of our method is
O(3p), while there are 2p−1 causal effects in
P . The gap is from two aspects. One is the
search for critical variables. The other is that
the causal effects in MAGs from different local
MAGs are possibly equal, while these causal
effects are considered separately based on each
local MAG. The complexity of the latter part
dominates. While if we do not consider the graphical characterization based on critical variable and
adopt the local method of Malinsky and Spirtes [16] in estimating causal effects that enumerates
MAGs in a subregion, the complexity is exponentially larger than ours, as shown in Table 1.

5 Experiments

In this section, we apply our method on synthetic dataset to validate the effectiveness and efficiency
of the proposed method. The code is developed based on R package “pcalg” [21].

We generate 100 random causal graphs and evaluate the number of correctly identified causal effects.
In each graph, there are p = 15 variables and an edge occurs between two variables with probability
0.3. We randomly take 3 variables as latent confounders. And the last observed variable in the causal
order is set to the response variable. We generate linear Gaussian data4 according to the causal graph.
Based on these information, we know not only the true MAG, but also whether each edge is pure.
Hence we have the ground truth causal effect of each variable on the response variable by GBC.
Beginning from the PAG obtained by the true MAG, we record the number of correctly identified
causal effects under different intervention times with different methods.

4When variables are continuous, the positivity assumption tends to be violated. Here we ignore such risks
because the identifiability has been proven and we just want to test whether the proposed method could accurately
learn the structure and identify the generalized back-door set.
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In our method, we adopt a greedy strategy to select the intervention variable. To verify the feasibility,
we design a baseline method ACIC-simple, where we randomly select the intervention variable of
which the causal effect on Y has not been identified. To distinguish the methods with different strate-
gies, we call our method ACIC-greedy. There are two additional baseline methods, Do and ACI [7].
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Figure 3: The number of correctly identified
causal effects by different methods.

For Do, it identifies causal relations by judging
whether the distribution of observed variable takes
a change under intervention, which idea is ap-
plied widely in many active causal discovery meth-
ods [2, 3]. Since in these methods all the variables
could be observed under intervention, we allow Do to
select which variable Xj to observe under interven-
tion instead of observing Y . The results are shown
in Figure 3. The superiority of ACIC-greedy to
ACIC-simple implies the greedy strategy to intervene
helps saving intervention times. The phenomenon
that ACIC-greedy is more efficient than Do verifies
that exploiting causal effect elaborately could take us
more message about the structure. There are many
effects wrongly identified by ACI, which indicates
the risk of ignoring latent confounders.

6 Conclusion

In this paper, we tackle the problem of identifying the causal effect of each variable on the response
variable when the causal graph is unknown and there may exist latent confounders. We present the
graphical characterization that allows us to find all possible causal effects in a PMAG. The charac-
terization guides learning structure with the interventional data of only the response variable. Our
method can achieve target effect identification effectively and efficiently in both saving intervention
times and reducing computational complexity. And they are verified theoretically and empirically.

There are two main aspects to improve the method. One is on how to completely update a PMAG
with the learned knowledge by interventional data. The other is on how to reduce the computational
complexity further if possible. We look forward to future work that could address these problems.
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Appendix A Preliminary

In this part, we first show some well-defined notions in Section A.1. The relation between pure and visible is
displayed in Section A.2. Then, we review the generalized back-door criterion and some related results such as
the necessary and sufficient condition for the existence of a generalized back-door set in Section A.3. Finally,
we generalize these results to adapt to partial mixed ancestral graph taking purity into account in Section A.4.

A.1 Well-defined notions

In Pearl’s causality framework, we use a graph G = (V(G),E(G)) to describe the causal relation between
the variables, where V(G) denotes the variable set and E(G) denotes the causal relation. A mixed graph is a
graph containing two kinds of edges: directed edges→ and bi-directed edges↔. The two ends of an edge are
called mark and have two types arrowhead or tail. If there are some circles (◦) in a graph, the graph is a partial
mixed graph. The circle implies that the mark could be either arrowhead or tail but they are uncertain to us. Vi is
a parent/child/spouse of Vj if Vi → Vj /Vi ← Vj /Vi ↔ Vj . A possible directed path from Vi to Vj is a path
without arrowheads at the marks near Vi on every edge. Vi is an (possible) ancestor of Vj if there is a (possible)
directed path from Vi to Vj or Vi = Vj . The (possible) ancestor set is denoted by An(Vj , G) (PossAn(Vj , G)).
Similar definitions are for (possible) descendant, denoted by De(Vj , G) (PossDe(Vj , G)). If Vi ∈ An(Vj , G)
and Vi ↔ Vj , it forms an almost directed cycle. There is a collider path between Vi and Vj if they are adjacent
or there is a path between them where all passing nodes are colliders in the path. A path from Vi to Vj is a
minimal path if there is not a path with order preserving subsequence from Vi to Vj .

A mixed graph is an ancestral graph if there is no directed or almost directed cycle (since we assume no selection
bias, we do not consider undirected edges in this paper). m-separation (m-connecting or active) is proposed
by Richardson et al. [22] to describe the conditional independence (or not) in ancestral graph. An ancestral
graph is a maximal ancestral graph (MAG) if for any two non-adjacent vertices, there is a set of vertices that
m-separates them.

In an MAG, a path p = 〈X, · · · ,W, V, Y 〉 is a discriminating path for V if (1) X and Y are not adjacent,
(2) every vertice between X and V in the path is a collider on p and a parent of Y . Two MAGs are Markov
equivalent if they share the same m-separations. A class comprised of all Markov equivalent MAGs is a Markov
equivalence class (MEC). We use a partial ancestral graph (PAG) to denote an MEC, where circle occurs if the
marks here are not the same in all Markov equivalent MAGs, while tail (arrowhead) occurs if all the marks here
are tails (arrowheads).

Given an MAGM or a PAG P , A directed edge A→ B is visible if there is a vertex C not adjacent to B, such
that either there is an edge between C and A that is into A, or there is a collider path between C and A that
is into A and every vertex on the path is a parent of B. Otherwise A → B is said to be invisible. As shown
in Zhang [11], Maathuis et al. [12], the intention to introduce “visible” is to imply the situation that there cannot
be a latent confounder influencing the two variables of the edge. Let G denote an MAGM or a PAG P . GX is
the graph obtaining from G by removing all directed edges out of X that are visible in G. Positivity requires
that any one combination of the values of all the variables is with a positive probability. Selection bias says that
when we collect the observational data, some latent variables are given, which are influenced by more than one
observed variables.

For a partial mixed graph, we say it is a partial mixed ancestral graph (PMAG) if there is no directed or
almost directed cycle and denote it by P . The relation between PMAG and PAG is like that between partially
directed acyclic graph (PDAG) and completed partial directed acyclic graph (CPDAG) when there are no
latent confounders [10]. Both MAG and PAG are seen as special cases of PMAG. Next, we define the Markov
Equivalent Class of PMAG P . Before that, we present the definition of a triples with order and a necessary and
sufficient condition about Markov equivalence by Ali et al. [14].

Definition 6 (with order). Let Di(i ≥ 0) be the set of triples of with order i in an MAGM, defined recursively
as follows:

Order 0 A triple 〈a, b, c〉 ∈ D0 if a and C are not adjacent
Order i+ 1 A triple 〈a, b, c〉 ∈ Di+1 if

(1) for all j < i+ 1, 〈a, b, c〉 6∈ Dj , and,
(2) there is a discriminating path 〈x, q1, · · · , qp, b, y〉 for b with
either 〈a, b, c〉 = 〈qp, b, y〉 or 〈a, b, c〉 = 〈y, b, qp〉 and the p colliders
〈x, q1, q2〉, · · · , 〈qp−1, qp, b〉 ∈

⋃
j≤i Dj .

The Markov Equivalent Class of PMAG P is comprised of all the MAGsM such that if (1)M and P have the
same adjacencies, (2) all the colliders with order inM are colliders in P , (3) all the non-circle marks in P are
also inM. In another word, P could be seen as a partial graph oriented by PAG ofM with all non-circle marks
consistent toM.By classical causal discovery method, FCI for example, we could only obtain a PAG. In our
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method, we need to keep identifying some circles at PAG until achieving target effect identification. We thus
introduce P to denote the continuously updated graph “between” the initial PAG and the truth MAGM.

A.2 The relation between pure and visible

Here, we illustrate that visibility is sufficient but not necessary for purity. It is trivially concluded by Zhang [11].
By Lemma 10 of Zhang [11], we can see that for each invisible edge Vi → Vj in an MAGM, there could be
a DAG whose MAG isM as well as Vi and Vj are influenced by a common latent variable. It also evidently
holds that there is a DAG whose MAG isM and the two variables of any an invisible edge are not influenced
by common latent variables. Hence invisibility is not sufficient for the existence of latent confounders. That is,
visibility is not necessary for purity. Also, By the converse negative proposition of Lemma 9 of Zhang [11], we
know if a directed edge is visible, there cannot be latent confounding effects for this edge. It thus holds visibility
is sufficient for purity. Hence we see that visibility is sufficient but not necessary for purity.

A.3 Generalized back-door criterion and the graphical condition for the existence of
generalized back-door set proposed by Maathuis et al. [12]

In this part, we first show the definition of back-door paths. Then we present some related concepts, followed by
the necessary and sufficient graphical criteria for the existence of a set of variables that satisfies generalized
back-door criterion. All of these results are presented by Zhang [11], Maathuis et al. [12].
Definition (Back-door path). Let (X,Y ) be an ordered pair of vertices in G , where G is a DAG, CPDAG,
MAG or PAG. We say that a path between X and Y is a back-door path from X to Y if it does not have a visible
edge out of X .
Definition (Definite noncollider; Zhang [11]). A nonendpoint vertex Xj on a path 〈· · · , Xi, Xj , Xk, · · · 〉 in a
partial mixed graph G is a definite non-collider on the path if (1) there is a tail mark at Xj , that is Xi ∗−Xj or
Xj −∗Xk, or (2) 〈Xi, Xj , Xk〉 is unshielded and has circle marks at Xj , that is, Xi ∗−◦Xj ◦−∗Xk and Xi

and Xk are not adjacent in G.
Definition (Definite status path; Zhang [11], Maathuis et al. [12]). A nonendpoint vertex X on a path p in a
partial mixed graph is said to be of a definite status if it is either a collider or a definite noncollider on p. The
path p is said to be of a definite status if all nonendpoint vertices on the path are of a definite status.
Definition (Generalized back-door criterion; Maathuis et al. [12]). Let X, Y and Z be pairwise disjoint sets of
vertices in G, where G represents a DAG, CPDAG, MAG or PAG. Then Z satisfies the generalized back-door
criterion relative to (X,Y) and G if (1) Z does not contain possible descendants of X in G; (2) for every
X ∈ X, the set Z ∪X\{X} blocks every definite status back-door path from X to any member of Y, if any, in
G. A set Z that satisfies the generalized back-door criterion relative to (X,Y) and G is called a generalized
back-door set relative to (X,Y) and G.

Given a graph G, Maathuis et al. [12] proposed the necessary and sufficient graphical criteria for the existence
of a set of variables that satisfies generalized back-door criterion with only observational data. Before that, the
definition of D-SEP(X,Y,G) is presented in Def. 1. Then we show one of the main result by Maathuis et al.
[12] in Prop. 11.
Definition 1 (D-SEP(X,Y,G) [12]). Let X and Y be two distinct vertices in a mixed graph G. We say that
V ∈ D-SEP(X,Y,G) if V 6= X , and there is a collider path between X and V in G, such that every vertex on
this path (including V ) is an ancestor of X or Y in G.
Proposition 11 (Maathuis et al. [12]). Let X and Y be two distinct vertices in G. There exists a generalized back-
door set relative to (X,Y ) and G if and only if Y 6∈ Adj(X,GX) and D-SEP(X,Y,GX) ∩ PossDe(X,G) =
∅. Moreover, if such a generalized back-door set exists, then D-SEP(X,Y,GX) is such a set. Denote
D-SEP(X,Y,GX) by D, the causal effect of X on Y is

P (Y |do(X = x)) =

∫
D

P (D)P (Y |D, X = x) dD. (4)

A.4 The improved result in Proposition 1

In this part, we first present our improved definition about back-door paths. With that we present the improved
generalized back-door criterion. The justification for such modification is that our method continuously identifies
some new marks with the actively interventional data until achieving target effect identification. The updated
graph among the process is a PMAG, but not necessarily a PAG or MAG. In this case, whether a directed edge
is with latent variables could be not only learned by the graphical criterion of visibility, but also learned by
interventional data, which is reflected by the purity matrix. Hence we modify the related conditions to make
it adapt to PMAG with purity matrix. This idea is simple and direct. But rigorously, the proof is very lengthy
since it refers to too many results of Maathuis et al. [12], Zhang [23, 11]. Hence we suggest readers skipping the
statements below and just reading the result in Prop. 1 without too much attention on the detail.
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Considering the back-door paths in PAG or MAG from X to Y according to the definition of Maathuis et al.
[12], they are the paths from X to Y that do not have a visible edges out of X . In fact, the reason that we
need to consider the paths that have invisible edge out of X is that there is one possibility that there are latent
confounders behind the invisible edge out of X (i.e. there is at least one latent confounder that influences the two
variables of the invisible edge). In the circumstances, there is a back-door path from X to Y through the latent
confounder. Hence we need to block such paths to make all the possible back-door paths blocked. As shown
by Zhang [11] and Appendix A.2, by mere observational data, only the visible edges can be confirmed that have
no latent confounders. However, if we could learn more knowledge about the existence of the latent confounders
by interventional data, e.g., if we could identify that some possible back-door paths are not back-door paths in
the DAGs, we do not consider blocking such paths. For example, for an MAG X → Y , if the edge is invisible,
X → Y is a back-door path. By original generalized back-door criterion, we cannot find a set that blocks the
back-door path X → Y , thus no set satisfies generalized back-door criterion. However, if we could learn that
there is no latent confounder behind the edge X → Y , then we could be sure that there is no need to block
X → Y , and ∅ satisfies back-door criterion in the causal graph, because no matter what the true causal graph that
the MAG represents is, there are no back-door paths from X to Y . Thus we can see P (Y |do(X)) = P (Y |X).
With such considerations, we take the purity matrix W into account and define back-door path relative to W as
follows. Note we restrict that W must be initialized by setting W [i, j] = 1 if the directed edge i→ j is visible
in the PAG learned by FCI algorithm. That is, W is able to indicate that the visible edges in PAG are pure.

Next, we present the definition of GX˜ . If G is an MAG, then GX˜ denotes the graph by removing the directed
edges out of X in G that are labeled to be pure in purity matrix. If G is a PMAG, we obtain GX˜ by two steps.
In the first step, let R be any one MAG from the subclass of MAGs consistent to G that have the same number
of edges into X in G. In the second step, we obtain GX˜ by removing the directed edges out of X in R if the
edge is labeled to be pure in purity matrix or is visible in R.

Definition 7 (Back-door path relative to W ). Let (X,Y ) be an ordered pair of vertices in G, where G is a
PMAG. Denote the purity matrix in graph G by W . We say that the path between X and Y is a back-door path
from X to Y if it does not start with a directed edge X → Z with W [X,Z] = 1, where Z is any a variable
except for X .

With the back-door path relative to W , the generalized back-door criterion relative to W is presented in the
following. In contrast to the original definition, we also add the statement of W .

Definition 8 (Generalized back-door criterion relative to (G,W )). Let X, Y and Z be pairwise disjoint sets of
vertices in G, where G represents a PMAG. Denote the purity matrix in graph G by W . Then Z satisfies the
generalized back-door criterion relative to (X,Y) and (G,W ) if (1) Z does not contain possible descendants
of X in G; (2) for every X ∈ X, the set Z ∪X\{X} blocks every definite status back-door path relative to W
from X to any member of Y, if any, in G. A set Z that satisfies the generalized back-door criterion relative to
(X,Y) and (G,W ) is called a generalized back-door set relative to (X,Y) and (G,W ).

Then, we present the adjustment criterion in PMAG and show that the set satisfies GBC in a PMAG satisfies
adjustment criterion in the PMAG.

Definition 9 (Adjustment criterion). Let X, Y, and Z be pairwise disjoint sets of vertices in a PMAG G and
W be a purity matrix of G. Then we say that Z satisfies the adjustment criterion relative to (X,Y ) and (G,W )
if for any density f compatible with G, we have

f(Y|do(X)) =

{
f(Y|X), if Z = ∅,∫
Z
f(Y|Z,X)f(Z) dZ = EZ{f(Y|Z,X)}, otherwise.

Proposition 12. Let X, Y, Z be pairwise disjoint sets of variables in a PMAG G and W be a purity matrix
of G. If Z satisfies the generalized back-door criterion relative to (X,Y) and (G,W ), then it satisfies the
adjacent criterion relative to (X,Y) and (G,W ).

Proof. It could be proved trivially by the results in Maathuis et al. [12]. Here we just show a proof sketch. If
a set Z satisfies GBC relative to (X,Y ) and (G,W ), then it satisfies invariance criterion (see Definition 7.1
of Maathuis et al. [12]). The proof process is as one direction in Theorem 7.3 of Maathuis et al. [12]. Note here
the result in converse direction does not necessarily hold, which is a difference between PMAG and PAG. Then
by Theorem 7.1 of Maathuis et al. [12] we could directly prove the set satisfies the adjacent criterion relative to
(X,Y).

Based on these, we present Prop. 1.

Proposition 1. Let G be a PMAG and W be a purity matrix of G. Suppose X ∈ An(Y,G) and Y are two
distinct vertices in G. There exists a generalized back-door set relative to (X,Y ) and (G,W ) if and only if
D-SEP(X,Y,GX˜ ) ∩ PossDe(X,G) = ∅. Moreover, if the set exists, D-SEP(X,Y,GX˜ ) is such a set. Denote
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D-SEP(X,Y,GX˜ ) by D, the causal effect is

P (Y |do(X = x)) =

∫
D

P (D)P (Y |D, X = x) dD. (1)

Proof. There are two modifications between Prop. 11 and Prop. 1. One is that we additionally take the purity
matrix W into account in Prop. 1. Thus we need to replace the visibility in their proof by purity, and extend
the back-door path and generalized back-door criterion relative to G to back-door path relative to W and
generalized back-door criterion relative to (G,W ). The other is that we consider PMAG rather than only
PAG. The rigorous proof is very lengthy and completely follows the proof of Maathuis et al. [12], Zhang
[23], we thus just show the different part and leave the details of the proof for the readers. For the “if”
statement, we need to prove Y 6∈ Adj(X,GX˜ ). If not, there is a directed edge X → Y where the two
variables are influenced by a latent confounder. In such case we could see that Y ∈ D-SEP(X,Y,GX˜ ) ∩PossDe(X,G), which contradicts D-SEP(X,Y,GX˜ ) ∩ PossDe(X,G) = ∅. Hence we have Y 6∈ Adj(X,GX˜ )and D-SEP(X,Y,GX˜ ) ∩ PossDe(X,G) = ∅. The other proof process of Prop. 1 is totally same as that
of Maathuis et al. [12]. Note thatR in Theorem 4.1 of Maathuis et al. [12] denotes any an MAG in the subclass
of MAGs in the MEC described by G that have the same number of edges into X as G. HenceRX˜ denotes the
MAG obtained fromR by removing the pure edges out of X in G, which is exactly the GX˜ in our paper.

For the “only if” statement, Lemma 7.7 of Maathuis et al. [12] does not necessarily hold in PMAG. We thus
cannot follow the proof directly. However, since we restrict that X ∈ An(Y,G), and V ∈ D-SEP(X,Y,GX˜ ),we can also conclude that there must be a directed path from V to Y in GX˜ . The other parts are the same as
those of Theorem 4.1 of Maathuis et al. [12].

Appendix B Minimal Conditional Set

In this part, we first define minimal conditional set regarding D-SEP(X,Y,MX˜ ). Then we show the uniqueness
of MCS by Lemma 14 in Appendix B.1. Next, we propose Alg. 0.1 to find the MCS in Appendix B.2, along
with the theoretical guarantee for the soundness of Alg. 0.1.

Definition 2 (Minimal conditional set regarding D-SEP(X,Y,MX˜ ) (MCS)). LetM be an MAG. X , Y , and
D denote the intervened variable, response variable, and the set D-SEP(X,Y,MX˜ ) inM, respectively. D is a
subset of D. D is a minimal conditional set regarding D inM if

(1) (Y ⊥ D\D |D ∪ {X})M,

(2) (Y 6⊥ D\D′|D′ ∪ {X})M, for any D
′ ⊂ D.

B.1 The uniqueness of MCS

Here, we prove the uniqueness of MCS. Before that, we propose Lemma 13 for supporting the main proof of
the uniqueness of MCS. Note that positivity is assumed in this paper. With an abuse of notation, we do not
distinguish random variable from the value of the random variable to make the proof concise.

Lemma 13. Let A,B,C,D be four pairwise disjoint variable sets. If Pr(D|C,A) = Pr(D|C,B), then
Pr(D|C,A) = Pr(D|C,B) = Pr(D|C).

In fact, the condition of this lemma provides an intuition that conditional distribution is irrelevant to A and B,
which concludes the result directly. Nevertheless, we give a rigorous proof as follows.

Proof. Multiply both sides of the condition by Pr(A|C), it holds that

Pr(A|C) Pr(D|C,A) = Pr(A|C) Pr(D|C,B)∑
A

Pr(A|C) Pr(D|C,A) =
∑
A

Pr(A|C) Pr(D|C,B)

Pr(D|C) = Pr(D|C,B).

Hence, we have Pr(D|C,B) = Pr(D|C). Similarly, it also holds that Pr(D|C,A) = Pr(D|C). We thus get
the desired conclusion.

Lemma 14 (Uniqueness). If both F1 and F2 are minimal conditional sets regarding D inM, then F1 = F2.
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Proof. If F1 6= F2, according to the definition of MCS, it evidently concludes F1\F2 6= ∅ and F2\F1 6= ∅.
We denote F = F1 ∩ F2, A = F1\F, B = F2\F. Evidently A,B,F, X are disjoint.

According to the definition, we have

Y ⊥ D\(F ∪A)|F ∪A ∪X, (5)
Y ⊥ D\(F ∪B)|F ∪B ∪X. (6)

By (5), it holds

Pr(Y |F,A, X) Pr(D\(F ∪A)|F,A, X)

=Pr(Y,D\(F ∪A)|F,A, X).

Multiply Pr(A|F, X) on both sides,

Pr(Y |F,A, X) Pr(D\F|F, X) = Pr(Y,D\F|F, X). (7)
Pr(Y |F,A, X) = Pr(Y |D\F,F, X) = Pr(Y |D, X). (8)

The conversion from (7) to (8) depends on Pr(D\F|F, X) 6= 0 for any attainable value of the variables, which
is due to the positivity assumption. Similarly, we have

Pr(Y |F,B, X) = Pr(Y |D, X). (9)

Combine (8) and (9), Pr(Y |F, X,A) = Pr(Y |F, X,B) = Pr(Y |D, X). By Lemma 13, we know
Pr(Y |F, X,A) = Pr(Y |F, X,B) = Pr(Y |F, X). We rewrite (7) as

Pr(Y |F, X) Pr(D\F|F, X) = Pr(Y,D\F|F, X).

It concludes Y ⊥ D\F|F, X . It conflicts with the conditions that F j F1 and F1 is a minimal conditional set
regarding D.

B.2 The algorithm to find MCS and the theoretical guarantee

Till now, we have proved the uniqueness of MCS, which plays an important role in the following proofs. Next,
we propose Alg. 0.1 to find the MCS regarding D inM. Lemma 15 and Lemma 16 are two important lemmas
used widely in the proofs below. With these results, we prove the soundness of Alg. 0.1 to find the MCS in
Lemma 17.

Algorithm 0.1 Find the MCS regarding D inM
1: S = D // Record the MCS
2: for V in S do
3: if V ⊥ Y |

{
X,S\{V }

}
inM then

4: S = S\{V }
5: end if
6: end for

output: S.

Lemma 15. Let A,B,C be three pairwise disjoint variables sets. If E ⊂ B, E 6= ∅ and A ⊥ B|C, then
A ⊥ B\E|{C ∪E}.

Proof. Since A ⊥ B|C and E ⊂ B, it concludes that A ⊥ E|C. We have

Pr(A|C,E) Pr(B\E|C,E)

=Pr(A|C) Pr(B\E|C,E)

=Pr(A|C,B) Pr(B\E|C,E)

=Pr(A|C,B\E,E) Pr(B\E|C,E)

=Pr(A,B\E|C,E).

We get the desired conclusion.

Lemma 16. For two pairwise disjoint sets A1,A2 such that (A1 ∪A2)∩{X,Y } = ∅, denote A = A1 ∪A2.
Let E be a set such that E ⊇ A and E ∩ {X,Y } = ∅. If A2 ⊥ Y |X,A1 and E\A ⊥ Y |X,A, then
(E\A,A2) ⊥ Y |X,A1.
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Proof. Denote E\A by B.

Pr(B, Y |X,A1)

=
∑
A2

Pr(B,A2, Y |X,A1),

=
∑
A2

Pr(A2, Y |X,A1) Pr(B|X,A1,A2, Y ),

=
∑
A2

Pr(A2|X,A1) Pr(Y |X,A1) Pr(B|X,A1,A2)

∵ (A2 ⊥ Y |X,A1) and (E\A ⊥ Y |X,A),

=Pr(Y |X,A1) Pr(B|X,A1).

It completes the proof.

Lemma 17. Algorithm 0.1 is sound in finding the MCS regarding D in G.

Proof. Denote the MCS by D. Without loss of generality, suppose the whole enumerating sequence in Line
2 is T1, T2, · · · , Tk. For any Ti, we will prove if Ti ∈ D\D, the condition in Line 3 is satisfied. While if
Ti ∈ D, the condition in Line 3 is not satisfied. In this case we could delete the variables which do not belong
to D and keep the variables belonging to D in D. We prove it by mathematical induction. T1 is considered
at first. If T1 ∈ D\D, by the definition of D, it holds that D\D ⊥ Y |D, X . Combining D\D ⊥ Y |D, X

with lemma 15, we have T1 ⊥ Y |D\{T1}, X , which satisfies the condition in Line 3. While if T1 ∈ D,
we aim to prove T1 6⊥ Y |D\{T1}, X . For the sake of contradiction, we assume T1 ⊥ Y |D\{T1}, X . By
the definition of MCS, we know that one set D′ ⊆ D\{T1} could be as the MCS. However, we know D is
an MCS which contains T1. That means there are two distinct MCSs, which contradicts Lemma 14. Hence
T1 6⊥ Y |D\{T1}, X .

We suppose the result above holds for the sequence T1, T2, · · · , Ti−1 and now the algorithm judges Ti in Line 3.
Since some variables have been deleted by Line 4, we denote the remained variable set T. The only difference
between D and T is the variables from T1, T2, · · · , Ti−1 which satisfies Line 3, i.e. the variable does not
belong to D according to the inductive hypothesis. Hence it is evident that D ⊆ T ⊆ D. If Ti ∈ D\D,
using Y ⊥ D\D|D, X and Lemma 15 (setting B = D\D and D = (T\{Ti})\D in Lemma 15), we have
Y ⊥ D\(T\{Ti})|T\{Ti}, X . Hence Y ⊥ Ti|T\{Ti}, X , which implies that the condition in Line 3
is satisfied. If Ti ∈ D, the proof is also similar to that for T1. For the sake of contradiction, we assume
Ti ⊥ Y |T\{Ti}, X . Without loss of generality, we denote the last deleted variable from T1 · · · , Ti−1 by
Tl1 . Since Tl1 is deleted in Line 4, it implies that Tl1 ⊥ Y |T, X . Combining Ti ⊥ Y |T\{Ti}, X and
Tl1 ⊥ Y |T, X by Lemma 16, we obtain that (Tl1 , Ti) ⊥ Y |T\{Ti}, X . We continue finding the second-to-last
deleted variable Tl2 from T1 · · · , Ti−1 and we can obtain (Tl1 , Tl2 , Ti) ⊥ Y |T\{Ti}, X . Repeat this process
until we find all deleted variables from T1 · · · , Ti−1, we obtain that (Tl1 , Tl2 , · · · , Tls , Ti) ⊥ Y |T\{Ti}, X .
Note Tl1 , Tl2 , · · · , Tls = D\T, it thus holds (D\T, Ti) ⊥ Y |T\{Ti}, X . By the definition of MCS, we can
obtain a subset D′ ⊆ T\{Ti} as the MCS regarding D. But according to the condition, Ti should be one variable
from the MCS, which contradicts Lemma 14 that implies the MCS is unique. Hence Ti 6⊥ Y |T\{Ti}, X . We
prove the result for Ti. The mathematical induction completes.

By mathematical induction, we prove the set of the remained variables by Algorithm 0.1 is MCS.

Appendix C Proofs for the Results in Section 3.3

There are three parts in this section. The first part is about the proof for Theorem 2. We first present Lemma 18,
which plays an important role in the proof of Theorem 2. By the lemma we prove Theorem 2 trivially. The
second part is about the proof for Theorem 3. We define critical variable in Definition 5. Then we provide the
proof for Theorem 3. In the last part, we prove Lemma 4.

C.1 Proofs for Theorem 2

Definition 3 (Local MAG of X based on P). Given a PMAG P and a variable X , a PMAG M is a local MAG
of X based on P if (1) M is with definite marks (arrowheads or tails) at X; (2) M is obtained from P by
marking some circles without generating new unshielded colliders or directed or almost directed cycles. We call
it local MAG for short if there is no ambiguity and denote it by M , which is different from calligraphicM that
denotes MAG.

Lemma 18. Let P be a PMAG which MAGM is consistent to. If V ∈ D-SEP(X,Y,M), then there is at least
one collider path between X and V in P and each variable in this path is a possible ancestor of X or Y in P .
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Proof. Suppose V ∈ D-SEP(X,Y,M). According to the definition of D-SEP(X,Y,M), there is a collider
path between V and X , and each variable in this path is an ancestor of X or Y inM. SinceM and P have the
same skeleton, we analyze the corresponding path in PMAG P . It is evident that each variable in this path is a
possible ancestor of X or Y in P . We then just prove that there is a collider path where each variable is the
possible ancestor of X or Y in P .

Since there is a collider path between X and V , where each variable is an ancestor of X or Y inM, there must
be a minimal collider path between X and V , where each variable is an ancestor of X or Y . For the sake of
clarity, we replace V by Fn and denote the minimal collider path by X∗→ F1 ↔ · · · ↔ Fn−1 ←∗Fn. We
assume the collider Fi−1 ↔ Fi ↔ Fi+1 is a collider without order. There must be an edge between Fi−1 and
Fi+1. The edge is evidently not bi-directed, otherwise it contradicts the minimal collider path. Without loss
of generality, we suppose the edge is Fi−1 → Fi+1. The reasonableness of this assumption is that collider
path between X and Fn is symmetric (here the condition that each variable is an ancestor of X or Y is not
considered).

Next we consider the collider Fi−2 ↔ Fi−1 ↔ Fi. There are two possible situations. One is that the collider is
with some constant order. In this case, we prove there is an edge Fi−1 → Fi+1 in the following. If they are
not adjacent, then there is a discriminating path Fi−2, Fi−1, Fi, Fi+1 for Fi, which implies that the collider
Fi−1 ↔ Fi ↔ Fi+1 is with order, contradicting the condition. Due to the ancestral property, the edge could
only be as Fi−2∗→ Fi+1. And it thus be Fi−2 → Fi+1 due to the minimal collider path condition. The other
situation is that Fi−2 ↔ Fi−1 ↔ Fi is also without order.

In the following we consider the collider at Fi−2, Fi−3, · · · , F1 recursively. During the iteration, sup-
pose the first variable Fk where the collider is without order. That is, the colliders at the variables
Fk+1, Fk+2, · · · , Fi−2, Fi−1 are with order. In this case, we first prove that for all the variable Fm, k ≤
m ≤ i− 1, there is an edge Fm → Fi+1. We could prove it by mathematical induction. We have proven that
Fi−1 → Fi+1 before. We suppose that for all the variables among Fi−t, Fi−t+1, · · · , Fi−1, i−t ≥ k+1, there
is a directed edge from the variable to Fi+1. For the variable Fi−t−1, if it is not adjacent to Fi+1, then there is a
discriminating path Fi−t−1, Fi−t, Fi−t+1, · · · , Fi−2, Fi−1, Fi, Fi+1 for Fi, which implies that Fi−1, Fi, Fi+1

is a collider with order, contradicting the condition. Hence there must be an edge between Fi−t−1 and Fi+1.
Since Fi−t−1 ↔ Fi−t → Fi−t+1, the edge is as Fi−t−1∗→ Fi+1. In addition, the edge cannot be bi-directed,
otherwise contradicting the minimal collider path condition. Hence it can only be as Fi−t−1 → Fi+1. The
mathematical induction completes.

Hence, for all the variables among Fk, Fk+1, · · · , Fi−1, there is a directed edge from the variable to Fi+1. Since
Fk−1 ↔ Fk ↔ Fk+1 is a collider without order, there must be an edge between Fk−1 and Fk+1. Evidently the
edge cannot be bi-directed due to the minimal collider path condition. We consider the situation that the edge
is Fk−1 ← Fk+1. In this case, we could prove that there is an edge Fk−1 ← Fk+2. If they are not adjacent,
then there is a discriminating path Fk−1, Fk, Fk+1, Fk+2 for Fk+1 and the collider Fk ↔ Fk+1 ↔ Fk+2 is
with a constant order, thus Fk−1 ↔ Fk ↔ Fk+1 is with a constant order, which contradicts the condition that
the collider at Fk is without order. Due to the ancestral property, the edge is as Fk−1 ←∗Fk+1. Due to the
minimal collider path condition, the edge could only be Fk−1 ← Fk+1. Similar to the process above, we could
prove that for all variables between Fk+1 and Fi, there is a directed edge from the variable to Fk−1. In this case,
there is a collider path Fk−1 ↔ Fk ↔ · · ·Fi+1 with edges Fj → Fi+1, ∀k ≤ j ≤ i− 1, and Fi → Fk−1. It
is an inducing path thus there is a bi-directed edge Fk−1 ↔ Fi+1, otherwise the maximal property is violated.
However, the bi-directed edge Fk−1 ↔ Fi+1 makes the path not minimal, which contradicts the minimal
collider path condition.

Thus, the only possible condition is that there is an edge between Fk−1 and Fk+1 and the edge is as Fk−1 →
Fk+1, and the collider Fk−1 ↔ Fk ↔ Fk+1 is without order. Now we consider the collider without order
Fk−1 ↔ Fk ↔ Fk+1 instead of Fi−1 ↔ Fi ↔ Fi+1. In another word, by such exchange we consider a
collider without order that is nearer to X in the collider path. By such exchange we could find the collider at Fm

without order which is nearest to X and there is an edge Fm−1 → Fm+1. Note during the iteration from Fi−2

to F1 before, if there is not a collider without order, then m = i.

If Fm is F1, i.e., X∗→ F1 ↔ F2 is such a collider without order and there is an edge X → F2, then it
contradicts the minimal collider path condition since there is a collider path X → F2 ↔ F3 ↔ · · · ↔
Fn−1 ←∗Fn. If Fm is not F1, all the colliders between X to Fm are with orders. Similar to the proof
above, there is edge Fj → Fm+1, ∀0 ≤ j ≤ m, where F0 is X . In this condition there is a collider path
X → Fm+1 ↔ Fm+2 ↔ · · · ↔ V , which also contradicts the minimal collider path condition. Hence we
conclude that there cannot be a collider without order in the minimal collider path between X and V . By Thm.
3.7 of Ali et al. [14], all MAGs in a Markov equivalent class have the same colliders with order. Since FCI is
complete [13], all the colliders with order are identified in the graph learned by FCI, thus are identified in M .
Hence, there is a collider path between X and V in M .

Lemma 19. Let M be a local MAG of X . Suppose an MAGM is consistent to M . For any variable A inM,
A is a descendant of X if and only if there is at least one minimal possible directed path from X to A in M .
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Proof. ⇐ Consider there is a minimal possible directed path from X to A in M . Since the marks at X are
certain in M , the corresponding path can only start with X →. To avoid the generation of unshielded colliders,
the path could only be directed from X to A. Hence in any an MAGM consistent to M , A is the descendant of
X . Hence inM, A is the descendant of X .

⇒ SinceM is an MAG consistent to M , there must be a possible directed path from X to A in M . Then by
Lemma B.1 of Zhang [13], there is a minimal possible directed path from X to A in M .

Theorem 2. Let M be a local MAG of X andM be an MAG consistent to M . Suppose V (V 6= X,Y ) is
a variable inM. If D-SEP(X,Y,MX˜ ) ∩ De(X,M) = ∅, then V ∈ D-SEP(X,Y,MX˜ ) holds if and only
if there is at least one collider path from X to V starting by an arrowhead at X in M such that each variable
except for X on the path is an ancestor of X or Y inM.

Proof. The proof is easy by Lemma 18. Combining the definition of D-SEP(X,Y,M) andMX˜ , we could
trivially conclude that V ∈ D-SEP(X,Y,MX˜ ) holds if and only if there is at least one collider path from V

to X in M such that inM each variable except for X on the path is an ancestor of X or Y , and the path does
not contain X

p−→. Hence the “if” statement is evident. For the “only if” statement, considering the condition
D-SEP(X,Y,MX˜ ) ∩ De(X,M) = ∅, if there is a collider path from X to V starting by an impure edge in M

such that inM each variable except for X on the path is an ancestor of X or Y , we could conclude the variable
adjacent to X on the path belongs to D-SEP(X,Y,MX˜ ). According to the path we also know such a variable
is the descendant of X , which contradicts the condition D-SEP(X,Y,MX˜ ) ∩ De(X,M) = ∅. Hence the path
cannot start by an impure edge from X . Combining with the fact that all the marks at X are not circle in the
local MAG M , the mark at X can only be arrowhead. We get the desired conclusion.

C.2 Proofs for Theorem 3

Definition 4 (PD-SEP(X,Y,M)). Let M be a local MAG of X andM be an MAG consistent to M . Variable
V ∈ PD-SEP(X,Y,M) if and only if V ∈ PossAn(Y,M)\De(X,M)5 and there exists a collider path between
X and V in M , where each non-endpoint variable is an ancestor of X or Y in M but not a descendant of X in
M.

Note that PD-SEP(X,Y,M ) is not necessarily a set that contains D.

Definition 5 (Critical variable for (X,Y )). In a local MAG M , Ft ∈ PD-SEP(X,Y,M) is called a critical
variable for (X,Y ) if there is a path X ↔ F1 ↔ · · · ↔ Ft−1 ↔ Ft or X ↔ F1 ↔ · · · ↔ Ft−1 ←◦Ft,
t ≥ 1, where each non-endpoint variable is an ancestor of X or Y in M , and there is a non-empty variable set S
relative to Ft defined as follows: S ∈ S if and only if in M (1) S is a child of X,F1, · · · , Ft−1, (2) there is
Ft ◦−∗ S, (3) S is at one minimal possible directed path from Ft to Y . Each circle at Ft on the edge with Ft−1

or S ∈ S is called a critical mark of Ft.

Theorem 3. Let M be a local MAG of X based on a PMAG P . Then condition (1) below is sufficient for
condition (2):

(1) there is no critical variable for (X,Y ) in M .

(2) for any an MAGM consistent to M such that (a) D-SEP(X,Y,MX˜ ) ∩ De(X,M) = ∅, (b) X ∈
An(Y,M), it holds that AM = A′M, where AM denotes the MCS regarding D-SEP(X,Y,MX˜ ) in
M and A′M denotes the MCS regarding PD-SEP(X,Y,M) inM;

Proof. Let M be any an MAG consistent to M such that (a) D-SEP(X,Y,MX˜ ) ∩ De(X,M) = ∅, (b)
X ∈ An(Y,M). Denote D-SEP(X,Y,MX˜ ) by D and PD-SEP(X,Y,M)\D by K. We first prove that if
there does not exist a critical variable for (X,Y ) in M , then K ⊥ Y |D, X inM. Note that here we aim to
prove this result holds for each MAG satisfying the conditions (a) and (b) above. Our main proof strategy
here is to attempt to construct an MAGM in which K 6⊥ Y |D, X . By considering all possible MAGM, we
conclude the desired result. Then, we prove that if K ⊥ Y |D, X , then D ⊆ PD-SEP(X,Y,M). Combining
the two results, we finally conclude that if there does not exist a critical variable for (X,Y ) in M , then all the
MAGs consistent to M induce the same MCS. For brevity, below we omit the conditions (a) and (b), but in fact,
when we say an MAGM consistent to M , we restrict thatM satisfies the conditions (a) and (b).

As shown in the outline, we prove in the first section that if there does not exist a critical variable for (X,Y ) in
M , then given any an MAGM consistent to M , for any a variable Ft ∈ PD-SEP(X,Y,M)\D, it holds that
Ft ⊥ Y |D, X .

5Note all the descendants of X inM consistent to M are knowable in M , which is detailed by Lemma 19 in
Appendix C.1. Hence PD-SEP(X,Y,M) can be obtained based on M without the further knowledge aboutM.
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According to the definition of D and PD-SEP(X,Y,M), we list the condition as follows: (1) there is a collider
path X ↔ F1 ↔ · · · ↔ Ft−1 ↔ ( or ←◦)Ft in M , where X,F1, · · · , Ft−1 are ancestors of Y in M , while
Ft is a possible ancestor but not ancestor of Y in M , is not an ancestor of Y inM. It trivially concludes that the
edge between Ft−1 and Ft is bi-directed. And by Prop. 1, we see that D m-separates all generalized back-door
paths from X to Y relative to W , where W is the true purity matrix. Since Ft is a possible ancestor of Y in M ,
there must be a minimal possible directed path from Ft to Y in M . Without loss of generality, we suppose the
minimal possible directed path Ft ◦−∗ S · · ·Y (S could be Y ).

A. If there does not exist a critical variable for (X,Y ) in M , then K ⊥ Y |D, X in eachM consistent to
M .

Suppose a variable Ft ∈ K such that Ft 6⊥ Y |D, X inM. Given the variable Ft and local MAG M , we say an
MAGM is legal ifM is consistent to M and Ft ∈ K inM.

At first, we give two supporting results in A.1 and A.2.

A.1. If there is an active path relative to (D, X) from Ft to U without colliders in M, where U is an
ancestor of Y inM, then there is a minimal active path without colliders relative to (D, X) from Ft to
U inM.

Evidently that there exists a minimal path from Ft to U inM. The main part is to prove that path is active. For
the sake of contradiction, we suppose for an active path L from Ft to U relative to (D, X) inM, the path is
not minimal and there is a minimal path L1 of L that is m-separated by (D, X) inM. Since there do not exist
colliders in the path L, it is evident that the path cannot go through the variables in (D, X), otherwise the path
will be m-separated by such variables. Considering L1 is a minimal path of L, both L and L1 do not go through
(D, X). If L1 is directed, then evidently L is directed due to no colliders in it. There are no colliders in L so
that the path L is m-separated by (D, X) if the minimal path L1 is m-separated by (D, X). Next we mainly
consider the situation that L1 is not directed. If L1 is m-separated by (D, X), L and L1 could only be like
Ft ∗−∗ · · · ∗→ sk → sk+1 ∗−∗ · · · ∗−∗ sl ∗−∗ · · · ∗−∗U and Ft ∗−∗ · · · ∗→ sk ←∗sl ∗−∗ · · · ∗−∗U (here Ft and U
can be swapped), where l ≥ k + 2 and sk is a collider in L1 but not a collider in L. Since there are no colliders
in L, the sub-path from sk to sl in L1 could only be sk → sk+1 → · · · → sl. In such a case, no matter the edge
between sk and sl is either sk ← sl or sk ↔ sl, it is against the ancestral property ofM. Hence if there is an
active path from Ft to U relative to (D, X), there is at least one minimal active path from Ft to U relative to
(D, X).

A.2. Some properties about the minimal paths from Ft to U without colliders inM whose corresponding
path in M begins with Ft ◦−∗ S1, where U is an ancestor of Y inM.

For the corresponding paths inM of the minimal paths from Ft to U without colliders beginning with Ft ◦−∗ S1

in M , there are five types L1,L2,L3,L4,L5. For L1, the path inM is as Ft ↔ S1 → · · ·U . For L2, the
path in M is as Ft ← S1 ← · · · ← Sk → Sk+1 · · · → U , where k ≥ 1. For L3, the path in M is as
Ft ← S1 ← · · · ← Sk ↔ Sk+1 · · · → U , where k ≥ 1. For L4, the path inM is as Ft → S1 → · · · → U .
For L5, the path inM is as Ft ← S1 ← · · · ← U . L4 and L5 are evidently impossible. If there is a path as
L4, Ft ∈ Anc(Y,M), thus Ft ∈ (D, X), which contradicts the condition Ft ∈ K. If there is a path as L5, Ft

is a descendant of Y , thus a descendant of X . According to Lemma 19, we could identify all the variables in
De(X,M) in M . Hence Ft could be identified to be a descendant of X in M , which contradicts the condition
Ft ∈ PD-SEP(X,Y,M). In the following, we first show in A.2.1 that the sets of paths as L2 and L3 are also
empty if the path does not go through the variables in (D, X).

A.2.1 Both the sets of paths asL2 andL3 are empty if the path does not go through the variables belonging
to (D, X).

Consider the paths as L2 at first. If S1 and Ft−1 are not adjacent, since there is an unshielded collider
Ft−1 ↔ Ft ←∗S1, we could identify the two arrowheads here by FCI algorithm in M , which contradicts the
circle at Ft in M .

Since S1 6∈ (D, X), there cannot be an edge S1 → Ft−1. Hence the edge between S1 and Ft−1 is as
Ft−1∗→ S1 in M. And due to the ancestral property, the edge could only be Ft−1 ↔ S1 given the fact
Ft−1 ↔ Ft and S1 → Ft. Then we consider the variable S2. If S2 and Ft−1 are not adjacent, then S2, S1, Ft−1

forms an unshielded collider, so that S2∗→ S1 ←∗Ft−1 could be identified in M . Due to the minimal path,
S1 → Ft could also be identified. According to the ancestral property, we could identify S∗→ Ft in M since
S1 → Ft and S∗→ S1, which contradicts the circle at Ft in minimal possible directed path from Ft to Y across
S in M . Hence S2 and Ft−1 are adjacent. Considering S2 → S1 and S1 ↔ Ft−1 inM, the edge between S2

and Ft−1 is as Ft−1 ←∗S2. Since the path does not go through (D, X), S2 6∈ (D, X). Hence the edge can
only be Ft−1 ↔ S2.

We could repeat the process above for S3, S4 · · · until for Sk. Similar to the proof above, we see that the edge
between St and Ft−1 is St ↔ Ft−1. In this case, there is a collider path X ↔ F1 · · ·Ft−1 ↔ Sk, and we
also know Sk is an ancestor of U , thus is an ancestor of Y . Hence Sk ∈ (D, X) inM, which contradicts the
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condition that the path from Ft to U does not go through the variables in (D, X). Hence we conclude that the
set of paths as L2 is empty if the path does not go through the variable in (D, X).

Then we consider the paths as L3. The proof of this part is quite similar to that for the paths as L2. To
prevent from discovering the arrowheads at Ft on the edge between Ft and S, there must be bi-directed edges
between Ft−1 and S1, S2, · · · , Sk. If Sk+1 is not adjacent to Ft−1, a v-structure forms so that we could
identify Sk+1∗→ Sk. Due to the fact that the path is minimal and without colliders in M , we could learn the
arrowhead at Ft, which contradicts with the circle at Ft. If Sk+1∗→ Ft−1, Sk+1 ∈ D since Sk+1 is an ancestor
of U , thus is an ancestor of Y . This contradicts with the fact that path does not go through the variable in
(D, X) inM. Hence the edge can only be Sk+1 ← Ft−1. However, there is an inducing path comprised of
Sk+1 ↔ Sk ↔ Ft−1 ↔ Sk−1, Ft−1 → Sk+1, and Sk → Sk−1. To satisfy the maximal property, there is a
bi-directed edge between Sk+1 and Sk−1, which contradicts with the condition that the path L3 is minimal.
Hence we conclude that the set of paths as L3 is empty if the path does not go through the variable in (D, X).

A.2.2 If the edge between Ft−1 and S1 is as Ft−1∗→ S1 in M, U is an ancestor of Y in M and S1 is
the variable adjacent to Ft in one minimal possible directed path from Ft to U in M , then there exists at
least one variable among X,F1, · · · , Ft−1 that has a bi-directed edge with S1 inM.

If the edge between Ft−1 and S1 is bi-directed, we get the desired conclusion directly. If the edge between
them are Ft−1 → S1, since Ft−1 ↔ Ft and Ft is not an ancestor of Y , the edge between Ft and S1 is
bi-directed. And we consider the edge between S1 and Ft−2. Since Ft−2 ↔ Ft−1 and Ft−1 → S1, the edge is
as Ft−2∗→ S1 inM. If it is bi-directed, the desired conclusion is directly obtained. If it is Ft−2 → S1, we
consider the edge between Ft−3 and S1. We repeat the process above. If there is no variable in F1, · · · , Ft−1

with a bi-directed edge with S1, there must be an edge X → S1 inM. However, since the edge Ft ↔ S1 and
S1 is located at one minimal possible directed path from Ft to U , the corresponding path inM of this minimal
possible directed path can only be Ft ↔ S1 → · · · → U in order to avoid the generation of v-structure. Since
X → S1, all the variables from S1 to Y are descendants of X . Since the mark at X is known in M , we could
identify the tail at X on the edge between X and S1 in M . In this case, there exists at least one critical variable
among F1, F2, · · · , Ft, which contradicts the condition that there does not exist a critical variable in M . Thus,
it is impossible that V → S1 for ∀V ∈ {X,F1, · · · , Ft−1} inM. Hence there must be a bi-directed edge with
S1 among the variables in X,F1, · · · , Ft−1.

With the results in A.1 and A.2, we prove the main results in the following. In the beginning, we prove the
desired results by showing that it is impossible to construct a legal MAG with an active path from Ft to Y . We
divide all possible paths from Ft to Y inM into two classes. The first class is comprised of all the paths without
colliders inM. And we prove in A.3 that all such paths cannot be active relative to (D, X) inM. The second
class is comprised of all the paths with colliders inM. We prove in A.4 that all such paths cannot be active
relative to (D, X) inM.

A.3. There do not exist active paths relative to (D, X) from Ft to Y without colliders in any legal MAG
M.

Suppose an active path from Ft to Y without colliders in a legal MAGM. By A.1, there is an active minimal
path without colliders from Ft to Y inM. Since there are no colliders in this path, the active path cannot go
through the variables in (D, X), otherwise the path is m-separated by (D, X). By A.2.1, we see that the active
minimal paths without colliders cannot be as L2 or L3. The only possible paths are like L1. However, in this
case by A.2.2 there exists at least one variable Fs ∈ {X,F1, · · · , Ft−1} with Fs ↔ S1. And because S1 is
an ancestor of U in L1, thus is an ancestor of Y , thus S1 ∈ (D, X), in which case the path without colliders
Ft, S1, · · · , Y is m-separated by (D, X), which contradicts the active path. Thus there is not a path as L1.
Hence we get the desired conclusion that there do not exist active paths from Ft to Y without colliders in any a
legal MAGM.

A.4. There do not exist active paths relative to (D, X) from Ft to Y with colliders in any legal MAGM.

This part is a bit complex. Before proposing the proof, we define the distance between Ft and (D, X). For
any variable Ft ∈ K, there must be some minimal possible directed paths from Ft to Y in M according to the
definition of K. We say that the distance between Ft and (D, X) is k if:

(1) There is one minimal possible directed path from Ft to Y , where the nearest variable to Ft that belongs
to (D, X) is with distance k to Ft. In another word, the minimal possible directed path is such as
Ft, C1, C2, · · · , Ck, · · · , Y , where C1, · · · , Ck−1 6∈ (D, X) and Ck ∈ (D, X).

(2) There do not exist minimal possible direct paths from Ft to Y , where the nearest variable to Ft that
belongs to (D, X) is with distance less than k to Ft.

We prove the desired conclusion by mathematical induction. In A.4.a, we prove that for any Ft ∈ K that has
distance 1 to (D, X), all the paths from Ft to Y with colliders are m-separated by (D, X) in any one legal
M. Combining this result with A.3, we conclude Ft ⊥ Y |D, X for Ft ∈ K that has distance 1 to (D, X)
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inM. Then in A.4.b, we prove that if for any Ft ∈ K that has distance k − 1 to (D, X) inM it holds that
Ft ⊥ Y |D, X , then for any Ft ∈ K that has distance k to (D, X) inM, all the paths from Ft to Y with
colliders are m-separated by (D, X). Also combining this result with A.3, we conclude Ft ⊥ Y |D, X for
Ft ∈ K that has distance k to (D, X) inM. We thus prove the desired result that for any variable Ft ∈ K, it
holds that Ft ⊥ Y |D, X .

A.4.a. For any Ft ∈ K that has distance 1 to (D, X), all the paths from Ft to Y with colliders are
m-separated by (D, X) in any one legalM.

Since the distance between Ft and (D, X) is 1, there is at least one minimal possible directed path Ft, S, · · · , Y ,
where S ∈ (D, X) inM. For the sake of contradiction, we suppose there is an active path relative to (D, X)
from Ft to Y with colliders inM. We denote the collider closest to Ft in this path by C. Since the path is active
relative to (D, X), the sub-path from Ft to C that contains no colliders is also active relative to (D, X). And it
is evident that this sub-path cannot go through the variables in (D, X), otherwise the path is m-separated by
(D, X).

Since Ft is not a variable in (D, X), the edge between Ft and Ft−1 is bi-directed, and the mark at Ft on the
edge between Ft and S is arrowhead, otherwise there is a directed path from Ft to Y across S inM, which
concludes that Ft ∈ (D, X). Since there is a circle at Ft on the edge between Ft and S in M , Ft−1 and S are
adjacent inM.

By the result of A.1, since C ∈ Anc(Y,M), there exist some active minimal paths without colliders from Ft

to C relative to (D, X) inM. Note in the following we may omit “relative to (D, X)”. That is, if we do
not speak intentionally, “active path” refers to “active path relative to (D, X)” . We will consider such active
minimal paths and construct the contradiction. We denote such an active minimal path by L. It is easy to see
that the mark at Ft is arrowhead, otherwise Ft is an ancestor of C thus an ancestor of Y , which contradicts
the condition that Ft 6∈ D. We separate all possible situations for L into three classes. In the first class, C
and Ft are adjacent, i.e. the path is Ft ↔ C. We denote it by L1. Note Ft → C is impossible otherwise
Ft ∈ D, which contradicts the condition Ft ∈ K. In the second class, we suppose the minimal active path is as
Ft ← S1 ← · · · ← Sk → Sk+1 → · · · → C, k ≥ 1. We denote it by L2. In the third class, we suppose the
minimal active path is as Ft ← S1 ← · · · ← Sk ↔ Sk+1 → · · · → C, k ≥ 1. We denote it by L3.

A.4.a.1 There does not exist an active path as L1 inM.

If there is such an active path as L1, there exists an active path from Ft to Y where there is a sub minimal
collider path beginning with Ft, that is the path is as Ft ↔ C1 ↔ C2 ↔ · · · ↔ Ct−1 ←∗Ct · · ·Y , where Ct

is the first variable that is not collider in the path and there are no bi-directed edges between Ci and Cj for
|j − i| ≥ 2, 1 ≤ i, j ≤ t.

Evidently Ft−1 and S are adjacent and C1 and S are also adjacent, otherwise the arrowhead on Ft ←∗S could
be identified due to the unshielded collider.

A.4.a.1.1 If an active path as L1 exists, then C1 and Ft−1 are adjacent inM.

At first, we consider the situation that C1 and Ft−1 are not adjacent. We will construct a contradiction by
proving Ct∗→ Ct−1 ↔ · · · ↔ C1 ↔ Ft ↔ S is a minimal collider path.

Since there is an unshielded collider Ft−1 ↔ Ft ←∗C1, we could identify the two arrowheads here by FCI
algorithm in M . And we could see that there must be a sub-structure Ft−1∗→ S ←∗C1 inM, otherwise the
mark at Ft on the edge between Ft and S could be identified to be arrowhead by Rule 3 of Zhang [13]. Next,
We consider the edge between S and Ft−1. By A.2.2, there exists an bi-directed edge between S and some
variable among X,F1 · · · , Ft−1 inM. Without loss of generality, we suppose the variable with a bi-directed
edge with S that is closest to Ft by Fs. In this case, there is a collider path X ↔ F1 · · ·Fs ↔ S ←∗C1. Here
the edge between S and C1 could only be S ← C1, otherwise if Ft ↔ C1 · · ·Y is active relative to D inM,
the path X ↔ F1 ↔ · · · ↔ Fs ↔ S ↔ C1 · · ·Y is also active relative to D inM, which contradicts the
condition that D m-separates all generalized back-door paths from X to Y .

Similarly, it is easy to prove that for all variables Ci, 1 ≤ i ≤ t− 1 there is not an edge Ci ↔ S, otherwise the
path X ↔ F1 ↔ · · · ↔ Fs ↔ S ↔ Ci · · ·Y is active relative to D inM, which contradicts the condition
that D m-separates all generalized back-door paths. Hence we conclude that the path Ct∗→ Ct−1 ↔ · · · ↔
C1 ↔ Ft ↔ S is a minimal collider path. By Lemma 18 (see the detailed proof process), we could identify all
the colliders in the minimal collider path by FCI algorithm, that is we could identify the arrowhead at Ft in M ,
which contradicts the possible directed path condition.

A.4.a.1.2. If an active path as L1 exists, then C1 and Ft−1 cannot be adjacent inM.

Then we consider the condition that C1 and Ft−1 are adjacent. Evidently the edge cannot be bi-directed,
otherwise given the active path Ft ↔ C1 ↔ · · · ↔ Ct · · ·Y relative to D, the path X ↔ F1 ↔ · · · ↔
Ft−1 ↔ C1 ↔ · · · ↔ Ct · · ·Y is active relative to D, which contradicts the condition that D m-separates all
the generalized back-door paths.
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We first consider the condition that Ft−1 ← C1. We discuss the relation between C2 and Ft−1. If C2

is adjacent to Ft−1, then by ancestral property it holds C2∗→ Ft−1 in M. And similar to the proof for
that there is not bi-directed edge between Ft−1 and C1, if there is C2 ↔ Ft−1, there is an active path
X ↔ F1 ↔ · · · ↔ Ft−1 ↔ C2 ↔ · · · ↔ Ct · · ·Y relative to D inM, contradicting the condition that D
m-separates all the generalized back-door paths. Hence the edge could only be C2 → Ft−1 inM. In addition,
for the variable Ct, it is impossible that there is an edge Ct → Ft−1, otherwise Ct ∈ D, which contradicts the
condition that L1 is active relative to D and Ct is not a collider in the path. Thus if all the variables among
C2, C3, · · · , Ct−1 are adjacent to Ft−1, then Ct is not adjacent to Ft−1.

Hence, suppose the first variable Cs from Ft to Ct that is no adjacent to Ft−1. Then we consider the minimal
collider path Cs∗→ Cs−1 ↔ · · · ↔ C1 ↔ Ft from Cs to Ft. Since Ft−1 ↔ Ft and Ci → Ft−1, 1 ≤ i ≤ s−1,
the path Cs∗→ Cs−1 ↔ · · · ↔ C1 ↔ Ft ↔ Ft−1 is a minimal collider path from Cs to Ft−1. By
Lemma 18 (see the detailed proof process), all the colliders could be identified in M . And all directed edges
Ci → Ft−1, 1 ≤ i ≤ s− 1 could be identified by Rule 4 of Zhang [13].

In the following we consider the edge between S and Ci, 1 ≤ i ≤ s. Here we only construct the contradiction
when all the variables between Ft and Cs are adjacent to S. It is easy to construct a contradiction if there are
some variables not adjacent to S, we thus leave them to readers. We discuss the edge between Ft−1 and S.

If the edge is as Ft−1∗→ S, we see the edge between S and C1 is as S ←∗C1 inM. Then similar to the last
part A.4.a.1.1 we could construct a contradiction. Hence we only consider S → Ft−1 inM in the following.

We first prove that there is some variable Cj , 2 ≤ j ≤ s− 1 such that Ci → Ft, 1 ≤ i ≤ j − 1 and Cj is not
adjacent to Ft. If Ft and C2 are not adjacent, then C2 is such a variable. If they are adjacent, since the minimal
collider path between Cs and Ft and C3 → Ft−1 ↔ Ft, the edge between Ft and C3 could only be Ft ← C3.
Repeat the process for C4, C5, · · · , Cs. If there is Ci → Ft, 2 ≤ i ≤ s− 1 and there is also an edge Cs → Ft,
it contradicts the minimal collider path condition. Hence we get the desired conclusion.

We consider the sub-structure comprised of S, Ft, Cj−1, Cj . The edge Cj−1 → Ft is identifiable in M , similar
to the proof process for that Cj−1 → Ft−1 is identifiable so that we skip this part. Hence we discuss whether
Ft, S, Cj form an unshielded collider. If Ft, S, Cj is not an unshielded collider, we consider the sub-structure
comprised of Ft, S, Cj , Cj−1. We have proved before that the edge Cj∗→ Cj−1 and Cj−1 → Ft could be
identified in M . We prove S∗→ Ft could be identified in M in the following. The reason is, if there is an edge
S ← Ft, there is an edge Cj−1 → S inM due to the ancestral property and thus there is an edge Cj∗→ S in
M, which contradicts the condition that Ft, S, Cj is not an unshielded collider. Hence we see that there cannot
be an edge as Ft∗→ S inM. Due to the completeness of FCI [13], the mark at Ft on the edge between Ft and S
is identifiable in the PAG. Thus the arrowhead at Ft is known in M , which contradicts the possible directed path
from Ft to Y across S. If they form an unshielded collider, we identify S ←∗Ft in M . If Cs is not adjacent to
Ft, we further discuss the edge between S and Cs. If Cs, S, Ft does not form an unshielded collider, S → Cs is
identified in M by Rule 1 of Zhang [13], thus S∗→ Cs−1 is identified by Rule 2 of Zhang [13], and S → Ft−1

is identified by Rule 4 of Zhang [13], and S∗→ Ft is identified by Rule 2 of Zhang [13], which contradicts the
possible directed path from Ft to Y across S. If they form an unshielded collider, we could identify Cs → S,
thus identify S → Ft−1 and S∗→ Ft in M , which also contradicts the possible directed path from Ft to Y
across S. If Cs is adjacent to Ft, the edge cannot be as Ft → Cs, in which case Ft ∈ D since Cs is an ancestor
of Y . It is also not bi-directed, which contradicts the minimal collider path condition. Thus it is as Ft ← Cs.
Consider the sub-structure comprised of Cs, Ft, Ft−1, S. Since S → Ft−1 inM, the edge between S and Ft

could only be as S∗→ Ft inM, and Cs, S, Ft−1 does not form an unshielded collider. Hence S∗→ Ft could
be identified in M by Rule 3 of Zhang [13], which contradicts the possible directed path from Ft to Y across S.
Hence we construct contradictions when there is an edge C1 → Ft−1.

If the edge between Ft−1 and C1 is as Ft−1 → C1, we note that C1 and Ft−1 are symmetrical on Ft as well
as X and Cs are symmetrical on Ft. Hence similar to the process above we could conclude S → C1 inM.
And it evidently hold that there cannot be a bi-directed edge Fs ↔ C1, 0 ≤ s ≤ t− 1, otherwise there is an
active path X ↔ F1 ↔ · · · ↔ F2 ↔ C1, · · · , Y relative to (D, X), which contradicts the fact that (D, X)
m-separates all the generalized back-door paths. By the ancestral property, if Ft−2 is adjacent to C1, then the
edge is as Ft−2∗→ C1, thus the edge is Ft−2 → C1 since it cannot be bi-directed. Similarly, we could prove
that there must be a variable between X and Ft that is not adjacent to C1. If there is X → C1, it contradicts
D ∩ De(X,M) = ∅. Suppose the first variable Fk from X to Ft that is not adjacent to C1. By considering the
minimal collider path Fk∗→ Fk+1 ↔ · · · ↔ Ft ↔ C as the proof process above, where Fk is not adjacent to
C1, S → C1 and C1 ↔ Ft is always identified in M , thus there is S∗→ Ft in M , which contradicts the possible
directed path. Combining the conditions that there is an edge Ft−1 → C1 and there is an edge Ft−1 ← C1, we
conclude that Ft−1 cannot be adjacent to C1 inM.

A.4.a.2. There does not exist an active path as L2 inM.

A.4.a.2.1 If an active path as L2 exists, then S1 and Ft−1 are adjacent inM.

At first, we consider the situation that S1 and Ft−1 are not adjacent. Since there is an unshielded collider
Ft−1 ↔ Ft ←∗S1, we could identify the two arrowheads here. And we could see that there must be a sub-
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structure Ft−1∗→ S ←∗S1 inM, otherwise the mark at Ft on the edge between Ft and S could be identified
to be arrowhead by Rule 3 of Zhang [13]. Next, we consider the edge between S and Ft−1. Since S is located
at one minimal possible directed path from Ft to Y in M , and the edge between Ft−1 and S is as Ft−1∗→ S,
by A.2 we see that there exists a bi-directed edge between S and some variable among X,F1 · · · , Ft−1 inM.
Without loss of generality, we suppose such variable by Fs.

Next we consider the edge S ←∗S1. If the edge is directed, then it holds that there is a collider path
X ↔ F1 · · ·Fs ↔ S ← S1, which concludes that S1 ∈ (D, X), which contradicts the condition that the
sub-path from Ft to C does not go through the variables in (D, X). Hence the edge between S and S1 could only
be S ↔ S1. If S2 and S are not adjacent, then S, S1, S2 forms an unshielded collider, so that S∗→ S1 ←∗S2

could be identified in M . Since the minimal path, S1 → Ft could also be identified. According to the ancestral
property, we could identify S∗→ Ft in M , which contradicts the condition that S is located at the minimal
possible directed path from Ft to Y in M . Hence S2 and S are adjacent. And there is S2∗→ S by ancestral
property.

We could repeat the process above for S3, S4 · · · until for Sk. Similar to the proof above, we see that the edge
between Sk and S is S ←∗Sk. In this case, there is a collider path X ↔ F1 · · ·Fs ↔ S ←∗Sk, and we also
know Sk is an ancestor of Y since it is an ancestor of C that is a variable from (D, X). Hence we conclude that
Sk ∈ (D, X), which contradicts the condition that the sub-path from Ft to C does not go through the variables
in (D, X).

Hence we see that if a path such as L2 exists, it is impossible that S1 and Ft−1 are not adjacent inM.

A.4.a.2.2 If an active path as L2 exists, then S1 and Ft−1 cannot be adjacent inM.

Here we consider the situation that S1 and Ft−1 are adjacent. We discuss all possible situations of this edge.

If the edge between them is S1 → Ft−1, the path X ↔ F1 ↔ · · · ↔ Ft−1 ← S1 ← S2 · · ·Y is active relative
to (D, X), which contradicts with the condition that (D, X) could m-separate all the generalized back-door
paths relative to (G,W ).

If the edge between them is S1 ← Ft−1, the ancestral property is violated since Ft−1 → S1 → Ft ↔ Ft−1,
which constructs a contradiction.

If the edge between them is S1 ↔ Ft−1 inM, there is a collider path X ↔ F1 ↔ · · · ↔ Ft−1 ↔ S1. We
consider the edge between S and S1. Since S ∈ (D, X), the edge between S and S1 cannot be as S1 → S,
otherwise S1 is an ancestor of Y thus S1 ∈ (D, X). Hence the edge between S1 and S is as S∗→ S1. If S2

and S are not adjacent, then S, S1, S2 forms an unshielded collider, so that S∗→ S1 ←∗S2 could be identified
in M . Since the minimal path, S1 → Ft could also be identified. According to the ancestral property, we
could identify S∗→ Ft in M , which contradicts the condition that S is located at the minimal possible directed
path from Ft to Y in M . Also, if Ft−1 and S2 are not adjacent, then S2∗→ S1 ←∗Ft−1 could be identified
in M since they form an unshielded collider. We could also identify S2∗→ S1 thus identify S1 → Ft. We
note that in M there is a sub-structure comprised of Ft−1, S, S1, S2 where Ft−1∗→ S1 ←∗S2 and Ft−1 is not
adjacent to S2. We discuss the marks at S in this sub-structure. If it is not as Ft−1∗→ S ←∗S2 in M , then
by Rule 3 of Zhang [13] there is S∗→ S1 in M . Then by Rule 2 of Zhang [13] there is S∗→ Ft in M , which
contradicts the condition. If it is as Ft−1∗→ S ←∗S2 in M , by A.2.2 there must be a variable Fs, 1 ≤ s ≤ t− 1
such that Fs ↔ S. Since S2 is not adjacent to Ft in M , S2, S, Ft is thus unshielded. And because S ←∗S2

in M , the mark at S on the edge between Ft and S can be identified. To guarantee that S is located at one
minimal directed path from Ft to Y , the mark at S could only be arrowhead in M . We consider such M
consistent to M . The edge between S and S1 could only be S ↔ S1. The reason is, if it is S ←∗S1, there is
a path X ↔ F1 ↔ · · · ↔ Fs ↔ S ← S1 ← S2 · · ·Y active relative to D, which contradicts the fact that D
m-separates all the generalized back-door path. Since S2 is adjacent to S, similarly we could prove that S2 ↔ S.
Repeat the similar process for S3, S4, · · · , Sk. We conclude Sk ∈ D, which contradicts the condition.

Hence S2 and Ft−1 are adjacent. Due to the ancestral property, the edge between S2 and Ft−1 must be Ft−1 ←
∗S2. If the edge is Ft−1 ← S2, similar to the previous proof, the path X ↔ F1 ↔ · · · ↔ Ft−1 ← S2 · · ·Y are
active relative to (D, X), which contradicts with the condition that (D, X) could m-separate all the generalized
back-door paths. Hence the edge between Ft−1 and S2 could only be Ft−1 ↔ S2. Also similar to the previous
proof, the edge between S and S2 must be as S∗→ S2, otherwise S2 ∈ D if S ← S2 since there is a collider
path X ↔ F1 ↔ · · · ↔ Ft−1 ↔ S.

We could repeat the above process for S3, S4 · · · until for Sk. Similar to the proof above, we see Sk and Ft−1

must be adjacent inM, and the edge between them is Sk ↔ Ft−1. However, we know that Sk is an ancestor of
C, where C ∈ (D, X). Hence Sk is an ancestor of Y , so that Sk ∈ (D, X), which contradicts the condition
that the sub-path from Ft to C does not go through the variables in (D, X).

Hence we see that if a path such as L2 exists, S1 and Ft−1 cannot be adjacent inM. Combining A.4.a.2.1 and
A.4.a.2.2, we conclude that there does not exist a path like L2 inM.

A.4.a.3. There does not exist an active path like L3 inM.
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A.4.a.3.1 If an active path as L3 exists, then S1 and Ft−1 are adjacent inM. Similar to the part A.4.a.2.1,
we could prove that there exists an bi-directed edge between S and some variable among X,F1 · · · , Ft−1 in
M. Without loss of generality, we suppose such variable by Fs. And similarly we also conclude that there must
be bi-directed edges between S and Si, 1 ≤ i ≤ Sk. We discuss the edge between S and Sk+1 next. If the
edge is like S ←∗Sk+1, there is a collider path X ↔ F1 · · ·Fs ↔ S ← Sk+1, and we also know Sk+1 is an
ancestor of Y since it is an ancestor of C that is a variable from D. Hence we conclude that Sk+1 ∈ D, which
contradicts the condition that the sub-path from Ft to C does not go through the variables in (D, X).

Hence, the edge between S and Sk+1 could only be S → Sk+1. In this case, there forms a sub-structure
Sk+1 ↔ Sk ↔ S ↔ Sk−1, Sk → Sk−1, and S → Sk+1, which is an inducing path. To satisfy the
maximal property, there is a bi-directed edge between Sk−1 and Sk+1, which contradicts the condition that
Ft ← S1 ← · · · ← Sk ↔ Sk+1 → · · · → C is a minimal path.

Hence we see that if a path such as L3 exists, it is impossible that S1 and Ft−1 are not adjacent inM.

A.4.a.3.2 If an active path as L3 exists, then S1 and Ft−1 cannot be adjacent inM.

If Ft−1 and S1 are adjacent, similar to the proof of A.4.a.2.2, we could prove that the edge between them
are Ft−1 ↔ S1. And we could prove that the edge between Ft−1 and Si, 1 ≤ i ≤ Sk are bi-directed, and
Ft−1 and Sk+1 are adjacent. We discuss the edge between Ft−1 and Sk+1 next. If edge is Sk+1 → Ft−1,
the path X ↔ F1 ↔ · · · ↔ Ft−1 ← Sk+1 · · ·Y are active relative to (D, X), which contradicts with the
condition that (D, X) could m-separate all the generalized back-door paths. If the edge is Sk+1 ↔ Ft−1,
Sk+1 ∈ D since it is an ancestor of the variable in D, which contradicts the condition that the sub-path from
Ft to C does not go through the variables in (D, X). If the edge is Sk+1 → Ft−1, we notice that there forms
a sub-structure comprised of Sk+1 ↔ Sk ↔ Ft−1 ↔ Sk−1, Sk → Sk−1, and Ft−1 → Sk+1. To satisfy the
maximal property, there is a bi-directed edge between Sk−1 and Sk+1, which contradicts the condition that
Ft ← S1 ← · · · ← Sk ↔ Sk+1 → · · · → C is a minimal path.

Hence we see that if a path such as L3 exists, S1 and Ft−1 cannot be adjacent inM. Combining A.4.a.3.1 and
A.4.a.3.2, we conclude that there does not exist a path as L3 inM.

Till now, we have concluded that for any Ft ∈ K that has distance 1 to (D, X), all the paths from Ft to Y with
colliders are m-separated by (D, X) in any one legalM. Then we prove the induction.

A.4.b. If for any Ft ∈ K that has distance k− 1 ≥ 1 to (D, X) inM it holds that Ft ⊥ Y |D, X , then for
any Ft ∈ K that has distance k to (D, X) inM, all the paths from Ft to Y with colliders are m-separated
by (D, X).

Denote the minimal possible directed path from Ft to Y where the distance between Ft and (D, X) is k by
Ft, S, · · · , Y . It is trivial to prove that S and Ft−1 are adjacent. We first prove that S ∈ K. If there is an
edge as Ft−1 ←∗S inM, then S ∈ K. If the edge is as Ft−1 → S, by A.2.2 there is at least one variable
Fs, 0 ≤ s ≤ t− 2 such that Fs ↔ S, thus we also conclude S ∈ K. The distance between S and (D, X) is
k − 1. By the inductive hypothesis, it holds that S ⊥ Y |D, X inM.

It is easy to see that S → Ft, otherwise S must be an ancestor of Y due the that fact that S is located at the
minimal possible directed path from Ft to Y in M . And because S ∈ K, it holds that S ∈ (D, X). However,
the distance between S and (D, X) is k − 1 ≥ 1, there is a contradiction.

Suppose an active path from Ft to Y with colliders Ft, S1, · · · , Sm, Sm+1, · · · , Y inM. Considering the
corresponding augmented path with S → Ft, i.e. S → Ft, S1, · · · , Sm, Sm+1, · · · , Y . Since S ⊥ Y |D, X in
M, and the sub-path from Ft to Y is active relative to (D, X) inM, the edge between S1 and Ft can only be
S1∗→ Ft inM, i.e., there is a collider at Ft.

We first present a supporting result in A.4.b.1.

A.4.b.1. If Sm is adjacent to S inM, then the marks at Sm on the edge between Sm and S and the edge
between Sm and Sm−1 are distinct, and the edge between Sm and Sm+1 is as Sm ←∗Sm+1.

Since S ⊥ Y |D, X inM, the path S, Sm, Sm+1, · · ·Y is m-separated by (D, X) inM. Denote the path
Ft, S1, · · · , Sm, Sm+1, · · · , Y by L1 and S, Sm, Sm+1, · · ·Y by L2. If the edge between Sm and Sm+1 is
as Sm → Sm+1, then Sm is not a collider in both paths L1 and L2. In this case if Sm ∈ (D, X) in M,
then L1 is m-separated by (D, X) since Sm is a non-collider in the path, which contradicts the active path. If
Sm 6∈ (D, X) inM, then the sub-path between Sm and Y is m-separated by (D, X) since L2 is m-separated
by (D, X) inM. Thus L1 is m-separated by (D, X), which contradicts the active path.

Similarly, if the marks at Sm on the edge between Sm and S and the edge between Sm and Sm−1 are the
same, we could conclude L1 is m-separated by (D, X) inM by discussing the conditions Sm ∈ (D, X) and
Sm 6∈ (D, X) inM, which contradicts the condition.

A.4.b.2. For any an active path Ft, S1, · · · , Y relative to (D, X) with colliders inM, the edge between S
and S1 inM is as S∗→ S1.
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Suppose S1 → S inM. Since S → Ft, the edge between Ft and S1 is as S1 → Ft. In this case, S1 is adjacent
to S and the marks at S1 on the edge between S1 and S and the edge between S1 and Ft are the same, which
contradicts the result in A.4.b.1. Hence the edge is as S∗→ S1. By A.4.b.1 again, there is an edge S1 → Ft in
M.

A.4.b.3. For any Ft ∈ K that has distance k to (D, X) inM, all the paths from Ft to Y with colliders
are m-separated by (D, X).

Similar to A.4.a, we consider the collider closest to Ft in the active path from Ft to Y with colliders. By
A.1, since the collider is an ancestor of Y inM (this collider belongs to (D, X) so that the path with this
collider could be active relative to (D, X)), there exist some active minimal paths without colliders from
Ft to this collider relative to (D, X) inM. Without loss of generality, we suppose the active minimal path
Ft ← S1 · · ·Sm−1∗→ Sm ←∗Sm+1 · · ·Y,m ≥ 2 (Sm+1 could be Y ), where Sm is the collider that is nearest
to Ft in the path. For simplification, we denote the path by L1. By A.4.b.1, the mark at S1 on the edge between
S1 and S2 is an arrowhead.

If S2 and S are not adjacent, then there is an unshielded collider S∗→ S1 ←∗S2, hence the two arrowheads at
S1 could be identified in M . And because the path is minimal, Ft ← S1 could be identified in M . In this case
we could identify there is an arrowhead at Ft on the edge between Ft and S by Rule 2 of Zhang [13], which
contradicts the condition that the path Ft, S, · · · , Y is a minimal possible directed path from Ft to Y . Hence S2

and S are adjacent.

By A.4.b.1, the edge between S3 and S2 is as S3∗→ S2. Since S2 is not a collider in L1, the edge between
S2 and S1 could only be S2 → S1. By A.4.b.1 again, the edge between S and S2 is as S∗→ S2. For the sake
of satisfying ancestral property, the edge could only be S ↔ S2 considering S ↔ S1 ← S2. In addition, S3

is adjacent to S, otherwise there is an unshielded collider S3, S2, S thus the two arrowheads at S2 could be
identified in M . Thus S2 → S1 is identified by Rule 1 of Zhang [13] and S2 ↔ S is identified by Rule 4
of Zhang [13]. Thus S → Ft is further identified by Rule 1 of Zhang [13], which contradicts the condition that
the path Ft, S, · · · , Y is a minimal possible directed path from Ft to Y . Hence S3 and S are adjacent. We
repeat the process above and for all variable Si, 0 ≤ i ≤ m − 2 (S0 = Ft), there are edges Si+1 → Si and
S ↔ Si inM, and Si+2 is adjacent to S.

By A.4.b.1, the edge between Sm and Sm−1 is Sm∗→ Sm−1. Since Sm is a collider, the edge is Sm ↔ Sm−1.
By A.4.b.1 again, the edge between Sm and S is Sm → S.

We discuss the distinct value attained by m. If m > 2, it is easy to construct a contradiction. Since Sm is not
adjacent to Sm−2 and there are edges Sm → S ↔ Sm−2. They form an unshielded collider so that Sm∗→ S
could be identified in M , thus S → Ft is identified by Rule 1 of Zhang [13], which contradicts the condition
that the path Ft, S, · · · , Y is a minimal possible directed path from Ft to Y .

The proof for m = 2 is a bit complex. The reason is that the subpath Sm−1, Sm, Sm+1, · · · , Y (here m = 2,
we still use m for generality) is not necessarily minimal. In the following we present the proof in this case.

We first prove Sm+1 and S are adjacent. Suppose it does not hold. If Sm−1 and Sm+1 are not adjacent,
Sm−1∗→ Sm ←∗Sm+1 form an unshielded collider, thus the two arrowheads at Sm could be identified in M .
In this case we could identify Sm → S in M by Rule 1 of Zhang [13], since Sm is not adjacent to Ft since the
path Ft ← S1 · · · ∗→ Sm is minimal, we could identify S → Ft in M , which contradicts the condition that the
path Ft, S, · · · , Y is a minimal possible directed path from Ft to Y . Then consider the situation that Sm−1 and
Sm+1 are adjacent. Note that Sm−1 6∈ (D, X) since the path Ft ← S1 · · · ← Sm−1 ↔ Sm ←∗Sm+1 · · ·Y
is active relative to (D, X) inM. If the edge between Sm−1 and Sm+1 is as Sm−1 → Sm+1, there is an
edge Sm ↔ Sm+1 and a path S ↔ Sm−1 → Sm+1, · · · , Y . Since Ft ← S1 · · · ∗→ Sm ↔ Sm+1 · · ·Y is
active relative to (D, X) inM, the sub-path Sm+1, · · · , Y is active relative to (D, X) inM. And because
Sm−1 6∈ (D, X), the path S ↔ Sm−1 → Sm+1, · · · , Y is active relative to (D, X) inM, which implies S 6⊥
Y |D, X and contradicts with the condition. Hence the edge between Sm−1 and Sm+1 is as Sm−1 ←∗Sm+1.
In this case, there is an unshielded collider S ↔ Sm−1 ←∗Sm+1, thus could identify the two arrowheads at
Sm−1 in M . And since there is no unshielded collider Sm+1∗→ Sm ←∗S in M since the edge between S
and Sm is as S ← Sm inM, we could identify Sm∗→ Sm−1 in M by Rule 3 of Zhang [13], thus identify
Sm−1 → Sm−2 → · · · → Ft by Rule 1 of Zhang [13] and Sm−1 ↔ S ↔ Sm−2 by Rule 4 of Zhang [13].
If m = 2, then we identify S∗→ Ft by Rule 2 of Zhang [13]. If m > 2, then we identify S → Ft by Rule 1
of Zhang [13] since Sm−1 → S and Sm−1 is not adjacent to Ft. Both of them contradict the condition that the
path Ft, S, · · · , Y is a minimal possible directed path from Ft to Y . Hence there is always a contradiction if S
is not adjacent to Sm+1.

We consider the situation that S is adjacent to Sm+1. If the edge is as S∗→ Sm+1, there is an edge Sm+1 → Sm

by A.4.b.1. This is against the ancestral property since Sm → S. Hence the edge between S and Sm+1 could
only be as S ← Sm+1. And by A.4.b.1 there is an edge Sm+1 ↔ Sm. And the edge between Sm+2 and
Sm+1 is as Sm+2∗→ Sm+1. Similar to this process, we could prove if Sj , j ≥ m + 1 is adjacent to S, then
Sj → S, Sj ↔ Sj−1, and Sj+1∗→ Sj . If all the variables between Sm+1 and Y are adjacent to S, it holds that
S 6⊥ Y |D, X , which contradicts the condition. Hence there is at least one variable between Sm+1 and Y that
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is not adjacent to S. Suppose the variable that is nearest to Sm+1 and not adjacent to S in the path Sn. That
is, there is a path S ↔ Sm ↔ Sm+1 ↔ · · · , Sn, n ≥ m+ 2, where Sm+1, Sm+2, · · · , Sn−1 is a parent of S
and Sn is not adjacent to S. That is, Sn, Sn−1, · · · , Sm, S is a discriminating path for Sm inM.

Note again that there is a collider path from Sn to S inM. And all the variables between Sn−1 and S1 are
parents of S inM. Here evidently S1 is located at the minimal collider path between S and Sn. By Lemma 18
(see the detailed proof process), we could identify all the colliders in the minimal collider path from Sn to S
by FCI algorithm. Hence there is S2 ↔ S1 ↔ S in M . Since Ft and S1 are not adjacent, we could identify
S1 → Ft by Rule 1 of Zhang [13] and identify S∗→ Ft by Rule 2 of Zhang [13], which contradicts the condition
that the path Ft, S, · · · , Y is a minimal possible directed path from Ft to Y . Hence we conclude that for all the
paths from Ft to Y , they are m-separated by (D, X).

Hence, we conclude that for any Ft ∈ K that has distance k to (D, X) inM, all the paths from Ft to Y with
colliders are m-separated by (D, X). The mathematical induction completes. Hence we prove that there do not
exist active paths relative to (D, X) from Ft to Y with colliders in any legal MAGM. The part A.4 completes.

Combining A.3 and A.4, we conclude that there is no an active path relative to (D, X) from Ft to Y in any
legal MAGM. That is, there is not a legal MAGM such that Ft 6⊥ Y |D, X inM. Hence we conclude that
K ⊥ Y |D, X .

2. In any an MAGM consistent to M , if K ⊥ Y |D, X , then D ⊆ PD-SEP(X,Y,M) .

For the sake of contradiction, we suppose there is a minimal collider path X ↔ F1 ↔ · · · ↔ Ft ←∗Ft+1,
where Ft ∈ K, Ft+1 6∈ PD-SEP(X,Y,M) and Ft+1 belongs to D. If it never happens, it is concluded trivially
that D ⊆ PD-SEP(X,Y,M), which we leave for the readers. There is no need to worry that there is a minimal
collider path between X and Ft+1 which is not across a variable Ft ∈ PD-SEP(X,Y,M)\Anc(Y,M), because
in this case it concludes that Ft+1 ∈ K, which contradicts the conditions.

By the definition of D, Ft and Ft+1 are ancestors of Y inM. Suppose Ft → S1 → · · · → Sp → Y the
directed path from Ft to Y . Since the collider path X ↔ F1 ↔ · · · ↔ Ft ←∗Ft+1 is minimal, by Lemma 18
(see the detailed proof process) we could identify all the colliders in this path. Hence Ft−1 is adjacent to S1,
otherwise the tail at Ft on the edge between Ft and S is identified in M , which contradicts the condition Ft ∈ K.
Similarly, Ft+1 and S1 are adjacent. By ancestral property, the edge between Ft−1 and S1 is as Ft−1∗→ S1 in
M. Since Ft+1∗→ Ft and Ft → S1, there is Ft+1∗→ S1 inM.

Then we prove that there exist some variable Fs, 0 ≤ s ≤ t− 1 where F0 = X such that Fs ↔ S1. Otherwise,
for the edge between Ft−1 and S1, the edge could only be Ft−1 → S1. And we consider the edge between
Ft−2 and S1 further. If they are not adjacent, there is a discriminating path Ft−2 ↔ Ft−1 ↔ Ft → S1 with
Ft−1 → S1 in M , thus we could identify Ft → S1 in M . Hence there is an edge between Ft−2 and S1. By the
ancestral property, the edge could only be Ft−2∗→ S1. Since we suppose no bi-directed edges between any Fs

and S1, the edge could only be Ft−2 → S1. Repeat the process and we have X → S1. However, in this case Ft

is a critical variable, contradicting the condition.

Suppose Fs1 is the variable with a bi-directed edge with S1 that is nearest to Ft in the collider path. It is easy
to see that the collider path X ↔ F1 ↔ · · · ↔ Fs1 ↔ S1 ←∗Ft+1 is also a minimal collider path. Thus S1

belongs to D. If S1 ∈ Anc(Y,M), there is a collider path X ↔ F1 ↔ · · · ↔ Fs1 ↔ S1 ←∗Ft+1 where
each variable between X and Ft+1 are ancestors of Y in M , hence we identify Ft+1 ∈ D in M or Ft+1 ∈
PD-SEP(X,Y,M), neither contradicts the condition. If S1 6∈ Anc(Y,M), we see S1 ∈ PD-SEP(X,Y,M). In
this case, there is a collider path X ↔ F1 ↔ · · · ↔ Fs1 ↔ S1 ←∗Ft+1 in M where S1 ∈ PD-SEP(X,Y,M).
Note here S1 and Ft are symmetrical in the sense that they have the same property but S1 is closer to Y in the
directed path to Y . In this case, we see S1 as original Ft and discuss S2. Similarly, if there is not a contradiction,
there must be some variable Fs2 with a bi-directed edge with S2, and S2 6∈ Anc(Y,M). Repeat this process for
S3, S4, · · · , Y , we could identify that there is some variable Fst with a bi-directed edge with Y . In this case,
there is a path X ↔ F1 ↔ · · · ↔ Fst ↔ Y , which is active relative to D, contradicting the condition that D
m-separates all generalized back-door paths from X to Y . Hence, we conclude that there cannot be a variable
Ft+1 ∈ D\PD-SEP(X,Y,M). Hence we conclude if K ⊥ Y |D, X , then D ⊆ PD-SEP(X,Y,M) in any an
MAGM consistent to M .

Hence, if there is no critical variable, it holds that K ⊥ Y |D, X and D ⊆ PD-SEP(X,Y,M) in any a legal
MAG. That is PD-SEP(X,Y,M) = D ∪K. Thus the MCS regarding PD-SEP(X,Y,M) equals to the MCS
regarding D.

C.3 Proofs for Lemma 4

Lemma 4. Let P be a PMAG of MAGM. If X ∈ An(Y,M) and D-SEP(X,Y,MX˜ )∩De(X,M) = ∅, then
the MCS regarding D-SEP(X,Y,MX˜ ) inM and the corresponding local MAG are contained in the output of
Algorithm 1.
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Proof. In line 2 of Alg. 1, the algorithm enumerates local MAGs with different marks at X . EvidentlyM is
consistent to one local MAG among them. Without loss of generality, supposeM is consistent to M j . If there
is no critical variable (Line 5, Line 6) in M j , as implied by Theorem 3, all the MAGsM′consistent to M j

have the same MCS regarding D-SEP(X,Y,M′) in respective graphM′, and equal to the MCS regarding
PD-SEP(X,Y,M j). Hence no matter whatM is in the class of MAGs consistent to M j , the MCS regarding
D-SEP(X,Y,MX˜ ) inM is equal to MCS regarding PD-SEP(X,Y,M j), which is returned in the output.

If there is a critical variable set Cj in M j (Line 3, 4), denote the non-empty set S defined in Definition
5 of the main paper by S also, we firstly consider the situation that Cj contains only one variable C. We
see by the definition of critical variable that there is a collider path X ↔ F1 ↔ · · · ↔ Ft−1 ↔ C or
X ↔ F1 ↔ · · · ↔ Ft−1 ←◦C. We notice that the edge between C and S belonging to S is as C∗→ S due
to the ancestral property. Hence, we just consider two further local MAGs M j1 and M j2 , where M j1 is with
the edges Ft−1 ↔ C ↔ S for ∀S ∈ S, and M j2 is with the edges C → S for ∀S ∈ S and Ft−1 ↔ C or
Ft−1 ←◦C (Line 11). The edge between Ft−1 and C in M j2 follows the edge in local MAG M j . Note that
here we rule out the local MAGs with both C → S for some S ∈ S and C ↔ S for the other S ∈ S. The reason
is if there is some S1 belonging to S such that C → S1 and another S2 belonging to S such that C ↔ S2 in
some MAGM′, it holds that S2 ∈ D-SEP(X,Y,M′X˜ ). We prove S2 ∈ D-SEP(X,Y,M′X˜ ) in the following.
(1) It is evident that there is a collider path X ↔ F1 ↔ · · · ↔ Ft−1 ↔ C ↔ S2 and each variable except for
S2 on it is ancestor of X or Y inM′X˜ ; (2) S2 is also an ancestor of Y due to the fact that S2 is localed at a
minimal possible directed path from C and Y . When there is an arrowhead at S2 on the edge between C and S2,
S2 must be an ancestor of Y in the path to prevent from generating unshielded colliders. Hence, we conclude
S2 ∈ D-SEP(X,Y,M′X˜ ). In addition, S2 ∈ De(X,M′) according to the condition (2) of the definition of
critical variables. That is S2 ∈ De(X,M′) ∩ D-SEP(X,Y,M′X˜ ), which contradicts the condition.

Therefore, we only consider local MAG M j1 and M j2 . Similarly, when there are more than one variable in
Cj , for each C ∈ Cj , since we only consider two situations C ↔ S for ∀S ∈ S and C → S for ∀S ∈ S,
we consider 2|C

j | situations in total, where |Cj | denotes the set size of Cj . Given a subset C ⊆ Cj , there
possibly exists a local MAG M j1 in which C1 → S and C2 ↔ S for ∀C1 ∈ C, C2 ∈ Cj\C, and ∀S ∈ S.
That is reflected by Line 11. For all the MAGsM′ consistent to M j1 , it holds that C ⊆ D-SEP(X,Y,MX˜ )and Cj\C ∩ D-SEP(X,Y,MX˜ ) = ∅. Combining with the algorithm to find MCS, it is easy to see that all the

variables in C belong to MCS, while all the variables in Cj\C do not belong to MCS. Since there are 2|C
j |

possible C ⊆ Cj , we could obtain 2|C
j | new local MAGs based on M j in which the causal effects (or MCSs)

are different from the others. If there is a critical variable in a new local MAG M jk for example, the remaining
part is same as before, which is in Line 12-15.

Hence for each local MAG M j of X , all the considered local MAGs have covered the whole space of MAGs
where GBC does not fail to identify P (Y |do(X)). Hence no matter which MAG consistent to M j is the true
MAG, we could find a local MAG consistent to it and the corresponding MCS regarding D-SEP(X,Y,MX˜ )as long as GBC does not fail to identify P (Y |do(X)) inM. By enumerating all M j , we can find all MCSs
regarding D-SEP(X,Y,MX˜ ) in all MAGM consistent to P .

Remark. A pity here is that there is no guarantee for the existence of MAGs consistent to each considered local
MAG. However, this does not impact the soundness of the proposed method that the MCS in the true MAG
could be returned.

Appendix D Proofs for the Results in Section 3.4

In this section, we present the proof for the propositions in “Learning marks and purity matrix by interventional
data” in order.

Proposition 5. If P (Y |do(X)) = P (Y ), the marks at X are arrowheads in all the minimal possible directed
paths from X to Y in a partially mixed ancestral graph.

Proof. If there is a tail at X on a minimal possible directed path, the path begins from a directed edge out
of X . Such a path must be a directed path from X to Y in order to avoid the generation of new unshielded
colliders, otherwise there will be an arrowhead pointing to X on the minimal possible directed path in P , which
contradicts the fact that the path is a minimal possible directed path from X to Y . While such a directed path
implies that X is an ancestor of Y , contradicting P (Y |do(X)) = P (Y ).

Proposition 6. In situation (3), let T denote all variables adjacent to X in the minimal possible directed paths
from X to Y . For T ∈ T, if for ∀V ∈ T\T , it holds either T 6∈ Adj(V,P) or there is a variable S 6∈ Adj(V,P)
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such that there is a collider path X◦→ T ↔ · · · ←∗S and every vertex except S on the path is a parent of V ,
then X → T .

Proof. For the sake of contradiction we assume a variable T meets the condition in the proposition and
X ∈ An(Y,M) but the edge is X ←∗T inM. For V ∈ T\T , if V is not adjacent to T , the mark at X in the
edge of V and X is evidently tail otherwise there is an unshielded collider V ∗→ X ←∗T in P and contradicts
the premise that T is in the minimal possible directed path from X to Y . And we know the edge X → V is
visible thus pure by definition 8 of Zhang [11]. If T is adjacent to V but there is a variable S not adjacent to V
such that there is a collider path X◦→ T ↔ · · · ←∗S and every vertex except for S on the path is a parent of V ,
if the mark at X in the edge of T and X is arrowhead, it concludes that the edge X → V is visible thus pure
by Definition 8 of Zhang [11]. Hence, we see that all directed edge out of X in the minimal possible directed
path from X to Y are visible. In this case GBC does not fail to identify P (Y |do(X)), which contradicts the
condition.

Proposition 7. Rule 11 is sound.

Proof. If it is d ← c, the edge between b and d is b → d. Hence the edge between a and d is as a∗→ d by
Lemma A.1 of Zhang [13]. Hence there is an unshielded collider a∗→ d← c, which contradicts the condition.

If the edge is d↔ c, we could prove that the only possible structure where a, d, c do not form an unshielded
collider is comprised of a ↔ b ↔ d ↔ c, b → c, and d → a. In this case there is an inducing path
a↔ b↔ d↔ c, which contradicts the maximal property.

Proposition 8. In a PMAG P , if there is no minimal possible directed path from X to Y , then X cannot be
ancestor of Y in any MAG consistent to P . And it holds that X 6∈ PossAn(Y,P).

Proof. It is a direct conclusion by the inverse negative proposition of Lemma B.1 of Zhang [13]. Although they
do not consider PMAG, it will not influence the result.

Appendix E Proofs for the Results in Section 4

In this section, we present the proofs for the results in Section 4 in order. Then we give a detailed analysis about
the computational complexity, which is omitted in the main paper due to the limit of the space.

E.1 Proofs

Theorem 9. Given the observational distribution of the observed variables, if there exists a valid generalized
back-door set for (X,Y ) in the true MAG with the knowledge of the purity of each directed edge, then we can
identify this set by only additional data of Y under intervention on X .

Proof. When GBC does not fail to identify P (Y |do(X)), the interventional data accords with situation (1)
or situation (2). The result for situation (1) is obvious since the distribution of Y remains unchanged under
intervention on X , which implies X has no causal effect on Y . The result for situation (2) is trivially guaranteed
by Prop. 1 and Lemma 4. According to Prop. 1, there exist generalized back-door sets and D-SEP(X,Y,MX˜ )is one among those. By Lemma 4, we could find the MCS regarding D-SEP(X,Y,MX˜ ). Hence we could
identify this set which could result in a consistent estimation of the causal effect with interventional data by
Eq. 3.

Proposition 10. LetM be a complete MAG with p+ 1 variables X1, · · · , Xp, Y , where the causal order of
the variables except Y is completely random and Y is at the last. Denote the graph obtained by FCI with
observational data by P and intervention variable by Xi. And let M be a local MAG of Xi with p − 1 − k
tails and k arrowheads at Xi. The computational complexity of finding all possible causal effects P (Y |do(Xi))
in all the MAGs consistent to M is O(2k). Further, the computational complexity of finding all causal effects
P (Y |do(Xi)) in all the MAGs consistent to P is O(3p).

Proof. In M , there are p − 1 − k tails and k arrowheads at Xi. Without loss of generality, we assume the
k variables X1, · · · , Xk have edges with Xi in which there is an arrowhead at Xi and p − 1 − k variables
X ′1, · · · , X ′p−1−k have edges with Xi in which there is a tail at Xi. At first we find all of X1, · · · , Xk are
critical variables. This part takes k ∗ (p− 1− k) complexity (For each variable X ∈ X1, · · · , Xk, we judge
whether there is some variable X ′ ∈ X ′1, · · · , X ′p−1−k which is a child of X). According to Line 10 in
Algorithm 1, we obtain 2k new local MAGs, and in each new local MAG there is no new critical variable, thus
we only have 1 calculation in each new MAG. Hence the computation complexity in these new local MAGs is
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Figure 4: Fig. 4(a) is the PAG. If we intervene on the variable X , we can obtain some local MAGs of
X . Two of them are shown in Fig. 4(b) and Fig. 4(c). Note there is a critical variable B in Fig. 4(c),
hence we need to consider the critical marks at B and we can obtain some new local MAGs and
Fig. 4(d) is one of them. We can see although Fig. 4(b) and Fig. 4(d) have different marks at X , the
causal effects of X on Y are the same in the two local MAGs.

2k. The total computation times are 2k + k ∗ (p− 1− k) ∼ O(2k). When considering the whole process in
Algorithm 1, denote the total computation complexity by T (p), it holds

T (p) =

p−1∑
k=0

Ck
p−1(2

k + k ∗ (p− 1− k)),

=

p−1∑
k=0

Ck
p−1(2

k) +

p−1∑
k=0

Ck
p−1(k ∗ (p− 1− k)),

= 3p−1 + p(p− 1)2p−2 ∼ O(3p).

E.2 Computational complexity analysis

In the setting of Prop. 10, let S denote the set of variable that has an edge with an arrowhead at Xi. Since the
graph is complete, for any subset S1 of S, we could construct an MAGM based on M such that MCS inM
is S1. We show the construction process in the following. Note that the graph is complete, if the constructed
graph is ancestral, then it is an MAG since any two variables are adjacent. And for the same reason there are no
discriminating paths in the graph. Thus there is no need to worry that there forms a new discriminating path
in the constructed graph, which makes the graph entail the conditional independence that is not entailed in the
original PAG P . We divide the variables in the local MAG M into three classes. The first class is S1. The second
class is S2 = S\S1. The third class is comprised of the variables that have an edge with a tail at Xi, denoted
by S3. Y belongs to S3 since it is the descendant of Xi. Evidently S1, S2, and S3 cover all the variables in P
except for Xi. We orient the subgraph of each class into a DAG, respectively. Note when we orient the subgraph
of the third classes, we set Y as the variable at the last of causal order. It could be achieved since the subgraph is
complete. For the edges between the variables A and B from two classes, we orient A→ B, if the order of the
class of A is less than that of B, for example A is in the first class S1 and B is in the third class S3. For the
edge between A and Xi, we mark the circle at A by arrowhead if A ∈ S2 ∪ S3, by tail if A ∈ S1. Till now we
have marked all the circles at M and obtain a graphM, and it is easy to prove this graph is ancestral. According
to our discussions before, we knowM is an MAG. And it is not hard to prove that MCS inM is S1, because
for ∀S1 ∈ S1, there is an edge between S1 and Y , which cannot be m-separated by other variables, and for
∀S2 ∈ S2, S2 is not a variable in D-SEP(X,Y,MX˜ ). Since there are 2k subsets of S1, there are 2k MCSs, in
other word, 2k causal effects in all the MAGs consistent to M .

When finding all possible causal effects in P , the complexity gap between our method and the lower bound (i.e.
2p−1, the number of possible causal effects in all MAGs consistent to P) is from two parts. One is in the search
of the critical variables, which results in that we calculate 2k + k ∗ (p− 1− k) times, which are k ∗ (p− 1− k)
larger than the number of causal effects. But this term do not influence the magnitude of the complexity. The
other is caused by that different local MAGs may lead to the same causal effect. An example in Fig. 4 is given to
illustrate it. There are different marks at X in Fig. 4(b) and Fig. 4(d), but the causal effects of X on Y in the two
graphs are the same. While such a causal effect is calculated by our method for twice when we consider the
local MAG M1 and local MAG M3 separately. Such kind of repeated calculations leads to that the complexity
of our method is O(3p−1) but not O(2p−1).

Next, we present a rough estimate about the complexity of the local algorithm (Algorithm 4.2) of Malinsky and
Spirtes [16]. In the complete graph, all variables are possible-D-SEP , which is as Definition 4.4 of Malinsky

and Spirtes [16]. Hence the search space of MAG is 3
p(p+1)

2 , where p(p+1)
2

is the number of the edges and
3 implies there are three kinds for each edge →,←,↔. If we enumerate the MAG by brute force, i.e. we
consider each combination of circle, then for each searched MAG, we need an extra p2 ∗ p(p−1)

2
complexity [15]
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to verify whether it is consistent to P . Since M is obtained from P , all the non-circle marks at P are
still inM. The only remaining part is to verify whether the enumerated MAG entails the same conditional
independence with P . A direct method is to generate an MAGM′ based on PAG by Theorem 2 of Zhang
[13] as a representative of P . And then we judge whetherM andM′ are Markov equivalent by the proposed
criterion for judging Markov equivalence [15]. If as the process proposed by Malinsky and Spirtes [16], we
adopt the method of Zhang and Spirtes [24] to evaluate the Markov equivalence, it is hard to estimate the
complexity accurately. However, note that the three rules in Lemma 1 of Zhang and Spirtes [24] are needed to
be judged in each step of transformation. This step needs a complexity of p at least (it is a very rough estimate.
p is not necessarily enough but just a loose lower bound). Hence, we need a complexity L0(p) satisfying

p ∗ 3
p(p+1)

2 ≤ L0(p) ≤ p3(p−1)
2

3
p(p+1)

2 to find all MAGs in total. Next, for each searched MAGM, we
will judge whether D-SEP(X,MX˜ ) ∩ De(X,M) = ∅, which also takes at least a complexity of p. Hence

the total complexity L(p) is p2 ∗ 3
p(p+1)

2 ≤ L(p) ≤ p4(p−1)
2

∗ 3
p(p+1)

2 = O(3p
2

). Hence the complexity is

p2 ∗ 3
p(p+1)

2 at least.

Appendix F Running Example

In this part, we provide a running example to show the procedure of the proposed method in Fig. 5. The true
MAG and the PAG obtained by FCI algorithm are in Fig. 5(a) and Fig. 5(b). No causal effect on Y is identified
in P . To identify these causal effects, we introduce interventions. Since there is the largest number of circles at
X , our algorithm selects X to intervene and collects the interventional data of Y , i.e., P (Y |do(X)). We could
see X ∈ An(Y,M) by P (Y |do(X)) 6= P (Y ), we thus need to further find all MCSs in the MAGs consistent
to P . According to Line 2 of Alg. 1 we obtain the local MAGs with different marks combinations at X . Fig. 5(c)
to Fig. 5(g) show five of them in which X ∈ An(Y,M). There are critical variables on the last four local MAGs,
thus the first condition in Theorem 3 is violated for them and we need to call Function CRITICAL. Here we
show the detailed further process for local MAG in Fig. 5(g). T is the critical variable so that there are two
elements ∅ and {T} in the power set of T . According to Line 11 of Alg. 1, we obtain Fig. 5(h) and Fig. 5(i)
according to the element of the power set, respectively. And it is easy to see that there is no critical variable in
these two graphs. In other words, we know that the MCSs in each graph of Fig. 5(h) and Fig. 5(i) are the same,
respectively. And we obtain that the MCSs in them are ∅ and {T}. By Line 15 of Alg. 1, we add (Fig. 5(h), ∅)
and (Fig. 5(i), {T}) to L. Similar, when we consider Fig. 5(c), we add (Fig. 5(c), ∅) to L. When we consider
Fig. 5(d), we add (Fig. 5(j), ∅) and (Fig. 5(k), {S}) to L. When we consider Fig. 5(e), we add (Fig. 5(l), ∅) and
(Fig. 5(m), {A}) to L. When we consider Fig. 5(f), we add (Fig. 5(n), ∅) and (Fig. 5(o), {S}) to L. According
to the discussions before, we have

L = {(Fig. 5(h), ∅),
(Fig. 5(i), {T}),
(Fig. 5(c), ∅),
(Fig. 5(j), ∅),
(Fig. 5(k), {S}),
(Fig. 5(l), ∅),
(Fig. 5(m), {A}),
(Fig. 5(n), ∅),
(Fig. 5(o), {S})}.

By Eq. 3 in the main paper, we infer MCS? = {T}, hence we learn the graph as Fig. 5(i). By applying the
eleven rules to update the PMAG by background knowledge, we learn the graph and purity matrix as Fig. 5(n).
T is the only variable whose causal effect is not identified. We thus intervene on T and identify Fig. 5(o). In
this task, even if we have the interventional data of full variables, it is hard to discover the structure with once
intervention on X , for instance by the method of Kocaoglu et al. [25] in Fig. 5(p).

Appendix G Related Work

In Pearl’s causality framework, many criteria are proposed to identify causal effects with the prior knowledge
of causal graph [26, 27, 28, 29]. Considering sometimes such causal knowledge is not available, some
work [11, 9, 30, 31, 12, 32, 16, 10, 33, 34] identifies the causal effects based on different kinds of partial graphs
learned according to the conditional independence of the variables. For example, a sufficient and necessary
graphical characterization for the identifiability of causal effect by generalized back-door criterion is given
by Maathuis et al. [12]. And Jaber et al. [33] proposed a complete algorithm to identify causal effects in PAGs.
However, due to the insufficient information contained in PAG, some causal effects cannot be identified, which
could have been identified if we have more structure knowledge.
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Figure 5: Fig. 5(a) is the true MAG and Fig. 5(b) is the PAG by FCI algorithm. Fig. 5(c)∼ Fig. 5(g)
denote five local MAGs. Critical variables are colored by blue. By the interventional data, we learn
the graph in Fig. 5(p), followed by the learned graph by intervening on S in Fig. 5(q). Fig. 5(r)
depicts that of Kocaoglu et al. [25].
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Towards learning the causal structure, there are many methods in the literature [8, 35, 5, 36, 6, 37]. However, if
there are no further functional assumptions [38, 39], it is hard to discover the whole graph. Some methods achieve
it by introducing active interventions [40, 2, 3, 41, 42, 43], and some by utilizing the changing distributions [44,
45, 46]. The proposed method in this paper is different from these classical methods in two aspects. One is
although we have the data under active intervention, we could only observe the response variable. The other is
that our goal is just target effect identification, where discovering the whole causal structure is not necessary.

When there are latent confounders, ancestral graph is introduced to describe the relation between the observed
variables [22]. In this paper, when we adopt the trivial method to enumerate each MAGs consistent to P by
considering all combinations of marks, we need to judge the Markov equivalence of two MAGs. The graphical
characterization of the Markov equivalence condition of two maximal ancestral graphs is a fundamental problem.
And many methods are proposed towards this problem with less computational complexity [47, 14, 15]. Zhang
and Spirtes [24] proposed a method to enumerate the MAGs more efficiently, which could be used to prevent
judging the Markov equivalence. Based on the ancestral graph, Kocaoglu et al. [25], Jaber et al. [6] proposed
solid causal discovery methods with the fully observed interventional data by utilizing do-calculus reversely.
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